Patents by Inventor Joseph Nicholas Lovria

Joseph Nicholas Lovria has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9017886
    Abstract: A fuel cell system is disclosed with a fuel cell stack having a plurality of fuel cells, the fuel cell stack including an anode supply manifold and an anode exhaust manifold, a sensor for measuring at least one of an environmental condition affecting the fuel cell stack and a characteristic of the fuel cell stack, wherein the sensor generates a sensor signal representing the measurement of the sensor; and a processor for receiving the sensor signal, analyzing the sensor signal, and controlling a flow rate of a fluid flowing into the anode supply manifold based upon the analysis of the sensor signal.
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: April 28, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Daniel I. Harris, Joseph Nicholas Lovria, Patrick Frost
  • Patent number: 8722263
    Abstract: A method for determining when to inject hydrogen gas into the anode side of a fuel cell stack associated with a fuel cell vehicle when the vehicle is off. The method includes estimating the concentration of hydrogen gas in the anode side of the fuel cell stack using a gas concentration model and determining if the estimated concentration of hydrogen gas is below a first predetermined threshold. If the estimated hydrogen gas is less than the threshold, then hydrogen gas is injected into the anode side from a hydrogen source. While the hydrogen gas is being injected, the method compares the estimated concentration of the hydrogen gas in the anode side to a desired concentration, and generates an error signal there between. If the error signal is greater than a second predetermined threshold, the algorithm continues to inject the hydrogen into the anode side of the fuel cell stack.
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: May 13, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Jun Cai, Joseph Nicholas Lovria, Sriram Ganapathy, Jaehak Jung, John P. Salvador
  • Patent number: 8697303
    Abstract: A method for controlling cathode air flow at system start-up by controlling a stack by-pass valve. The method includes determining a concentration of hydrogen in a cathode side of the fuel cell stack. The method also includes determining a volumetric flow rate through a cathode compressor, determining a volumetric flow rate through the cathode side and determining a fraction of volumetric flow rate through the cathode side to the total flow through the compressor. The method determines a modeled hydrogen outlet concentration from the fuel cell stack based on the volumetric flow rate through the compressor, the fraction of volumetric flow rate through the compressor to the total flow through the compressor and the concentration of hydrogen in the cathode side. The method uses a desired fraction of volumetric flow rate through the cathode side and the total flow through the compressor to determine the position of the by-pass valve.
    Type: Grant
    Filed: January 25, 2010
    Date of Patent: April 15, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Daniel I. Harris, Joseph Nicholas Lovria, Matthew C. Kirklin, Gary M. Robb
  • Patent number: 8524405
    Abstract: A system and method for detecting small hydrogen leaks in an anode of a fuel cell system. The method includes determining that a shut-down sequence has begun, and if so, deplete the cathode side of a fuel cell stack of oxygen. The method then increases the pressure of the anode side of the fuel cell stack to a predetermined set-point, and monitors the pressure decay of the anode side of the stack. The method compares the rate of pressure decay to an expected pressure decay rate, and if the measured pressure decay rate exceeds the expected pressure decay rate by a certain threshold, determines that a potential leak exists.
    Type: Grant
    Filed: May 20, 2010
    Date of Patent: September 3, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: John P. Salvador, Joseph Nicholas Lovria
  • Patent number: 8232014
    Abstract: A method for reducing the probability of an air/hydrogen front in a fuel cell stack is disclosed that includes closing anode valves for an anode side of the fuel cell stack to permit a desired quantity of hydrogen to be left in the anode side upon shutdown and determining a schedule to inject hydrogen during the time the fuel cell stack is shutdown. The pressure on an anode input line is determined and a discrete amount of hydrogen is injected into the anode side of the stack according to the determined schedule by opening anode input line valves based on the determined pressure along the anode input line so as to inject the hydrogen into the anode side of the stack.
    Type: Grant
    Filed: December 11, 2009
    Date of Patent: July 31, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: David A. Arthur, Dieter Kaimann, Thomas W. Tighe, Steven G. Goebel, John P. Salvador, Gary M. Robb, Daniel I. Harris, Joseph Nicholas Lovria, Balasubramanian Lakshmanan, Daniel T. Folmsbee
  • Patent number: 8195407
    Abstract: A system and method for estimating the amount of hydrogen and/or nitrogen in a fuel cell stack and stack volumes at system start-up and shut-down. The method defines the fuel cell stack and stack volumes as discrete volumes including an anode flow-field and anode plumbing volume, a cathode flow-field volume and a cathode header and plumbing volume. The method estimates the amount of hydrogen and/or nitrogen in the anode flow-field and anode plumbing volume, the cathode flow-field volume and the cathode header and plumbing volume when the fuel cell system is shut down, during a first stage when the hydrogen partial pressure between the anode and cathode is not in equilibrium and during a second stage when the hydrogen partial pressure between the anode and cathode is in equilibrium by considering various flows into and out of the volumes.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: June 5, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: John P. Salvador, Joseph Nicholas Lovria, Sriram Ganapathy, John C. Fagley
  • Publication number: 20110287327
    Abstract: A system and method for detecting small hydrogen leaks in an anode of a fuel cell system. The method includes determining that a shut-down sequence has begun, and if so, deplete the cathode side of a fuel cell stack of oxygen. The method then increases the pressure of the anode side of the fuel cell stack to a predetermined set-point, and monitors the pressure decay of the anode side of the stack. The method compares the rate of pressure decay to an expected pressure decay rate, and if the measured pressure decay rate exceeds the expected pressure decay rate by a certain threshold, determines that a potential leak exists.
    Type: Application
    Filed: May 20, 2010
    Publication date: November 24, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: John P. Salvador, Joseph Nicholas Lovria
  • Publication number: 20110244348
    Abstract: A method for determining when to inject hydrogen gas into the anode side of a fuel cell stack associated with a fuel cell vehicle when the vehicle is off. The method includes estimating the concentration of hydrogen gas in the anode side of the fuel cell stack using a gas concentration model and determining if the estimated concentration of hydrogen gas is below a first predetermined threshold. If the estimated hydrogen gas is less than the threshold, then hydrogen gas is injected into the anode side from a hydrogen source. While the hydrogen gas is being injected, the method compares the estimated concentration of the hydrogen gas in the anode side to a desired concentration, and generates an error signal there between. If the error signal is greater than a second predetermined threshold, the algorithm continues to inject the hydrogen into the anode side of the fuel cell stack.
    Type: Application
    Filed: April 5, 2010
    Publication date: October 6, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Jun Cai, Joseph Nicholas Lovria, Sriram Ganapathy, Jaehak Jung, John P. Salvador
  • Publication number: 20110229781
    Abstract: A fuel cell system is disclosed with a fuel cell stack having a plurality of fuel cells, the fuel cell stack including an anode supply manifold and an anode exhaust manifold, a sensor for measuring at least one of an environmental condition affecting the fuel cell stack and a characteristic of the fuel cell stack, wherein the sensor generates a sensor signal representing the measurement of the sensor; and a processor for receiving the sensor signal, analyzing the sensor signal, and controlling a flow rate of a fluid flowing into the anode supply manifold based upon the analysis of the sensor signal.
    Type: Application
    Filed: March 17, 2010
    Publication date: September 22, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Daniel I. Harris, Joseph Nicholas Lovria, Patrick Frost
  • Publication number: 20110183225
    Abstract: A method for controlling cathode air flow at system start-up by controlling a stack by-pass valve. The method includes determining a concentration of hydrogen in a cathode side of the fuel cell system. The method also includes determining a volumetric flow rate through a cathode compressor, determining a volumetric flow rate through the stack cathode and determining a fraction of volumetric flow rate through the cathode to the total flow through the compressor. The method determines a modeled hydrogen outlet concentration from the fuel cell stack based on the volumetric flow rate through the compressor, the fraction of volumetric flow rate through the compressor to the total flow through the compressor and the concentration of hydrogen in the cathode. The method uses a desired fraction of volumetric flow rate through the cathode and the total flow through the compressor to determine the position of the by-pass valve.
    Type: Application
    Filed: January 25, 2010
    Publication date: July 28, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Daniel I. Harris, Joseph Nicholas Lovria, Matthew C. Kirklin, Gary M. Robb
  • Publication number: 20110143241
    Abstract: A method for creating an oxygen depleted gas in a fuel cell system, including operating a fuel cell stack at a desired cathode stoichiometry at fuel cell system shutdown to displace a cathode exhaust gas with an oxygen depleted gas. The method further includes closing a cathode flow valve and turning off a compressor to stop the flow of cathode air.
    Type: Application
    Filed: December 11, 2009
    Publication date: June 16, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Thomas W. Tighe, Steven G. Goebel, Gary M. Robb, Abdullah B. Alp, Balasubramanian Lakshmanan, Joseph Nicholas Lovria
  • Publication number: 20110143243
    Abstract: A method for reducing the probability of an air/hydrogen front in a fuel cell stack is disclosed that includes closing anode valves for an anode side of the fuel cell stack to permit a desired quantity of hydrogen to be left in the anode side upon shutdown and determining a schedule to inject hydrogen during the time the fuel cell stack is shutdown. The pressure on an anode input line is determined and a discrete amount of hydrogen is injected into the anode side of the stack according to the determined schedule by opening anode input line valves based on the determined pressure along the anode input line so as to inject the hydrogen into the anode side of the stack.
    Type: Application
    Filed: December 11, 2009
    Publication date: June 16, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: David A. Arthur, Dieter Kaimann, Thomas W. Tighe, Steven G. Goebel, John P. Salvador, Gary M. Robb, Daniel I. Harris, Joseph Nicholas Lovria, Balasubramanian Lakshmanan, Daniel T. Folmsbee
  • Publication number: 20110087441
    Abstract: A system and method for estimating the amount of hydrogen and/or nitrogen in a fuel cell stack and stack volumes at system start-up and shut-down. The method defines the fuel cell stack and stack volumes as discrete volumes including an anode flow-field and anode plumbing volume, a cathode flow-field volume and a cathode header and plumbing volume. The method estimates the amount of hydrogen and/or nitrogen in the anode flow-field and anode plumbing volume, the cathode flow-field volume and the cathode header and plumbing volume when the fuel cell system is shut down, during a first stage when the hydrogen partial pressure between the anode and cathode is not in equilibrium and during a second stage when the hydrogen partial pressure between the anode and cathode is in equilibrium by considering various flows into and out of the volumes.
    Type: Application
    Filed: March 10, 2010
    Publication date: April 14, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: John P. Salvador, Joseph Nicholas Lovria, Sriram Ganapathy, John C. Fagley