Patents by Inventor Joseph Nuzman

Joseph Nuzman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11675594
    Abstract: Embodiments of instructions are detailed herein including one or more of 1) a branch fence instruction, prefix, or variants (BFENCE); 2) a predictor fence instruction, prefix, or variants (PFENCE); 3) an exception fence instruction, prefix, or variants (EFENCE); 4) an address computation fence instruction, prefix, or variants (AFENCE); 5) a register fence instruction, prefix, or variants (RFENCE); and, additionally, modes that apply the above semantics to some or all ordinary instructions.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: June 13, 2023
    Assignee: Intel Corporation
    Inventors: Robert S. Chappell, Jason W. Brandt, Alan Cox, Asit Mallick, Joseph Nuzman, Arjan Van De Ven
  • Publication number: 20230176870
    Abstract: Systems, methods, and apparatuses relating to circuitry to precisely monitor memory store accesses are described.
    Type: Application
    Filed: January 27, 2023
    Publication date: June 8, 2023
    Inventors: Ahmad YASIN, Raanan SADE, Liron ZUR, Igor YANOVER, Joseph NUZMAN
  • Patent number: 11645135
    Abstract: Methods and apparatuses relating to memory corruption detection are described. In one embodiment, a hardware processor includes an execution unit to execute an instruction to request access to a block of a memory through a pointer to the block of the memory, and a memory management unit to allow access to the block of the memory when a memory corruption detection value in the pointer is validated with a memory corruption detection value in the memory for the block, wherein a position of the memory corruption detection value in the pointer is selectable between a first location and a second, different location.
    Type: Grant
    Filed: September 14, 2020
    Date of Patent: May 9, 2023
    Assignee: Intel Corporation
    Inventors: Tomer Stark, Ron Gabor, Joseph Nuzman, Raanan Sade, Bryant E. Bigbee
  • Patent number: 11635965
    Abstract: Methods and apparatuses relating to mitigations for speculative execution side channels are described. Speculative execution hardware and environments that utilize the mitigations are also described. For example, three indirect branch control mechanisms and their associated hardware are discussed herein: (i) indirect branch restricted speculation (IBRS) to restrict speculation of indirect branches, (ii) single thread indirect branch predictors (STIBP) to prevent indirect branch predictions from being controlled by a sibling thread, and (iii) indirect branch predictor barrier (IBPB) to prevent indirect branch predictions after the barrier from being controlled by software executed before the barrier.
    Type: Grant
    Filed: October 31, 2018
    Date of Patent: April 25, 2023
    Assignee: Intel Corporation
    Inventors: Jason W. Brandt, Deepak K. Gupta, Rodrigo Branco, Joseph Nuzman, Robert S. Chappell, Sergiu D. Ghetie, Wojciech Powiertowski, Jared W. Stark, IV, Ariel Sabba, Scott J. Cape, Hisham Shafi, Lihu Rappoport, Yair Berger, Scott P. Bobholz, Gilad Holzstein, Sagar V. Dalvi, Yogesh Bijlani
  • Publication number: 20230101512
    Abstract: Techniques for shared data prefetch are described. An exemplary instruction for shared data prefetch includes at least one field for an opcode, at least one field for a source operand to provide a memory address at least a byte of data, wherein the opcode is to indicate that circuitry is to fetch of a line of data from memory at the provided address that contains the byte specified with the source operand and store that byte in at least a cache local to a requester, wherein the byte of data is to be stored in a shared state.
    Type: Application
    Filed: September 25, 2021
    Publication date: March 30, 2023
    Inventors: Christopher HUGHES, Zhe WANG, Dan BAUM, Alexander HEINECKE, Evangelos GEORGANAS, Lingxiang XIANG, Joseph NUZMAN, Ritu GUPTA
  • Publication number: 20230091205
    Abstract: Methods and apparatus relating to memory side prefetch architecture for improved memory bandwidth are described. In an embodiment, logic circuitry transmits a Direct Memory Controller Prefetch (DMCP) request to cause a prefetch of data from memory. A memory controller receives the DMCP request and issues a plurality of read operations to the memory in response to the DMCP request. Data read from the memory is stored in a storage structure in response to the plurality of read operations. Other embodiments are also disclosed and claimed.
    Type: Application
    Filed: September 20, 2021
    Publication date: March 23, 2023
    Applicant: Intel Corporation
    Inventors: Adrian Moga, Ugonna Echeruo, Eduard Roytman, Krishnakanth Sistla, Joseph Nuzman, Brinda Ganesh, Meenakshisundaram Chinthamani, Yen-Cheng Liu, Sai Prashanth Muralidhara, Vivek Kozhikkottu, Hanna Alam, Narasimha Sridhar Srirangam
  • Publication number: 20230082290
    Abstract: Systems, methods, and apparatuses relating to circuitry to precisely monitor memory store accesses are described.
    Type: Application
    Filed: July 12, 2022
    Publication date: March 16, 2023
    Inventors: Ahmad YASIN, Raanan SADE, Liron ZUR, Igor YANOVER, Joseph NUZMAN
  • Patent number: 11556341
    Abstract: Systems, methods, and apparatuses relating to instructions to compartmentalize memory accesses and execution (e.g., non-speculative and speculative) are described.
    Type: Grant
    Filed: June 7, 2021
    Date of Patent: January 17, 2023
    Assignee: Intel Corporation
    Inventors: Ravi Sahita, Deepak Gupta, Vedvyas Shanbhogue, David Hansen, Jason W. Brandt, Joseph Nuzman, Mingwei Zhang
  • Patent number: 11500636
    Abstract: Disclosed embodiments relate to spatial and temporal merging of remote atomic operations.
    Type: Grant
    Filed: February 24, 2020
    Date of Patent: November 15, 2022
    Assignee: Intel Corporation
    Inventors: Christopher J. Hughes, Joseph Nuzman, Jonas Svennebring, Doddaballapur N. Jayasimha, Samantika S. Sury, David A. Koufaty, Niall D. McDonnell, Yen-Cheng Liu, Stephen R. Van Doren, Stephen J. Robinson
  • Publication number: 20220335126
    Abstract: Systems, methods, and apparatuses relating to microarchitectural mechanisms for the prevention of side-channel attacks are disclosed herein. In one embodiment, a processor includes a core having a plurality of physical contexts to execute a plurality of threads, a plurality of structures shared by the plurality of threads, a context mapping structure to map context signatures to respective physical contexts of the plurality of physical contexts, each physical context to identify and differentiate state of the plurality of structures, and a context manager circuit to, when one or more of a plurality of fields that comprise a context signature is changed, search the context mapping structure for a match to another context signature, and when the match is found, a physical context associated with the match is set as an active physical context for the core.
    Type: Application
    Filed: February 1, 2022
    Publication date: October 20, 2022
    Inventors: Robert S. Chappell, Jared W. Stark, IV, Joseph Nuzman, Stephen Robinson, Jason W. Brandt
  • Patent number: 11416281
    Abstract: Embodiments of systems, methods, and apparatuses for heterogeneous computing are described. In some embodiments, a hardware heterogeneous scheduler dispatches instructions for execution on one or more plurality of heterogeneous processing elements, the instructions corresponding to a code fragment to be processed by the one or more of the plurality of heterogeneous processing elements, wherein the instructions are native instructions to at least one of the one or more of the plurality of heterogeneous processing elements.
    Type: Grant
    Filed: December 31, 2016
    Date of Patent: August 16, 2022
    Assignee: Intel Corporation
    Inventors: Rajesh M. Sankaran, Gilbert Neiger, Narayan Ranganathan, Stephen R. Van Doren, Joseph Nuzman, Niall D. McDonnell, Michael A. O'Hanlon, Lokpraveen B. Mosur, Tracy Garrett Drysdale, Eriko Nurvitadhi, Asit K. Mishra, Ganesh Venkatesh, Deborah T. Marr, Nicholas P. Carter, Jonathan D. Pearce, Edward T. Grochowski, Richard J. Greco, Robert Valentine, Jesus Corbal, Thomas D. Fletcher, Dennis R. Bradford, Dwight P. Manley, Mark J. Charney, Jeffrey J. Cook, Paul Caprioli, Koichi Yamada, Kent D. Glossop, David B. Sheffield
  • Patent number: 11392380
    Abstract: Systems, methods, and apparatuses relating to circuitry to precisely monitor memory store accesses are described.
    Type: Grant
    Filed: December 28, 2019
    Date of Patent: July 19, 2022
    Assignee: Intel Corporation
    Inventors: Ahmad Yasin, Raanan Sade, Liron Zur, Igor Yanover, Joseph Nuzman
  • Publication number: 20220206818
    Abstract: Embodiments for dynamically mitigating speculation vulnerabilities are disclosed. In an embodiment, an apparatus includes decode circuitry and execution circuitry coupled to the decode circuitry. The decode circuitry is to decode a single instruction to mitigate vulnerability to a speculative execution attack. The execution circuitry is to be hardened in response to the single instruction.
    Type: Application
    Filed: December 26, 2020
    Publication date: June 30, 2022
    Applicant: Intel Corporation
    Inventors: Alaa Alameldeen, Carlos Rozas, Fangfei Liu, Xiang Zou, Francis McKeen, Jason W. Brandt, Joseph Nuzman, Abhishek Basak, Scott Constable, Thomas Unterluggauer, Asit Mallick, Matthew Fernandez
  • Publication number: 20220207154
    Abstract: Embodiments for dynamically mitigating speculation vulnerabilities are disclosed. In an embodiment, an apparatus includes a hybrid key generator and memory protection hardware. The hybrid key generator is to generate a hybrid key based on a public key and multiple process identifiers. Each of the process identifiers corresponds to one or more memory spaces in a memory. The memory protection hardware is to use the first hybrid key to protect to the memory spaces.
    Type: Application
    Filed: December 26, 2020
    Publication date: June 30, 2022
    Applicant: Intel Corporation
    Inventors: Richard Winterton, Mohammad Reza Haghighat, Asit Mallick, Alaa Alameldeen, Abhishek Basak, Jason W. Brandt, Michael Chynoweth, Carlos Rozas, Scott Constable, Martin Dixon, Matthew Fernandez, Fangfei Liu, Francis McKeen, Joseph Nuzman, Gilles Pokam, Thomas Unterluggauer, Xiang Zou
  • Publication number: 20220207147
    Abstract: Embodiments for dynamically mitigating speculation vulnerabilities are disclosed. In an embodiment, an apparatus includes decode circuitry and execution circuitry coupled to the decode circuitry. The decode circuitry is to decode a register hardening instruction to mitigate vulnerability to a speculative execution attack. The execution circuitry is to be hardened in response to the register hardening instruction.
    Type: Application
    Filed: December 26, 2020
    Publication date: June 30, 2022
    Applicant: Intel Corporation
    Inventors: Carlos Rozas, Fangfei Liu, Xiang Zou, Francis McKeen, Jason W. Brandt, Joseph Nuzman, Alaa Alameldeen, Abhishek Basak, Scott Constable, Thomas Unterluggauer, Asit Mallick, Matthew Fernandez
  • Publication number: 20220207138
    Abstract: Embodiments for dynamically mitigating speculation vulnerabilities are disclosed. In an embodiment, an apparatus includes a decode circuitry and store circuitry coupled to the decode circuitry. The decode circuitry is to decode a store hardening instruction to mitigate vulnerability to a speculative execution attack. The store circuitry is to be hardened in response to the store hardening instruction.
    Type: Application
    Filed: December 26, 2020
    Publication date: June 30, 2022
    Applicant: Intel Corporation
    Inventors: Carlos Rozas, Fangfei Liu, Xiang Zou, Francis McKeen, Jason W. Brandt, Joseph Nuzman, Alaa Alameldeen, Abhishek Basak, Scott Constable, Thomas Unterluggauer, Asit Mallick, Matthew Fernandez
  • Publication number: 20220207148
    Abstract: Embodiments for dynamically mitigating speculation vulnerabilities are disclosed. In an embodiment, an apparatus includes decode circuitry and branch circuitry coupled to the decode circuitry. The decode circuitry is to decode a branch hardening instruction to mitigate vulnerability to a speculative execution attack. The branch circuitry is to be hardened in response to the branch hardening instruction.
    Type: Application
    Filed: December 26, 2020
    Publication date: June 30, 2022
    Applicant: Intel Corporation
    Inventors: Carlos Rozas, Fangfei Liu, Xiang Zou, Francis McKeen, Jason W. Brandt, Joseph Nuzman, Alaa Alameldeen, Abhishek Basak, Scott Constable, Thomas Unterluggauer, Asit Mallick, Matthew Fernandez
  • Publication number: 20220207149
    Abstract: Embodiments for dynamically mitigating speculation vulnerabilities are disclosed. In an embodiment, an apparatus includes speculation vulnerability detection hardware and execution hardware. The speculation vulnerability detection hardware is to detect vulnerability to a speculative execution attack and, in connection with a detection of vulnerability to a speculative execution attack, to provide an indication that data from a first operation is tainted. The execution hardware is to perform a second operation using the data if the second operation is to be performed non-speculatively and to prevent performance of the second operation if the second operation is to be performed speculatively and the data is tainted.
    Type: Application
    Filed: December 26, 2020
    Publication date: June 30, 2022
    Applicant: Intel Corporation
    Inventors: Jason W. Brandt, Joseph Nuzman, Asit Mallick, Carlos Rozas
  • Publication number: 20220207146
    Abstract: Embodiments for dynamically mitigating speculation vulnerabilities are disclosed. In an embodiment, an apparatus includes decode circuitry and load circuitry coupled to the decode circuitry. The decode circuitry is to decode a load hardening instruction to mitigate vulnerability to a speculative execution attack. The load circuitry is to be hardened in response to the load hardening instruction.
    Type: Application
    Filed: December 26, 2020
    Publication date: June 30, 2022
    Applicant: Intel Corporation
    Inventors: Carlos Rozas, Fangfei Liu, Xiang Zou, Francis McKeen, Jason W. Brandt, Joseph Nuzman, Alaa Alameldeen, Abhishek Basak, Scott Constable, Thomas Unterluggauer, Asit Mallick, Matthew Fernandez
  • Publication number: 20220197808
    Abstract: In one embodiment, a processor includes: one or more execution circuits to execute instructions; a stream prediction circuit coupled to the one or more execution circuits, the stream prediction circuit to receive demand requests for information and, based at least in part on the demand requests, generate a page prefetch hint for a first page; and a prefetcher circuit to generate first prefetch requests each for a cache line, the stream prediction circuit decoupled from the prefetcher circuit. Other embodiments are described and claimed.
    Type: Application
    Filed: December 22, 2020
    Publication date: June 23, 2022
    Inventors: HANNA ALAM, JOSEPH NUZMAN