Patents by Inventor Joseph P. Benco

Joseph P. Benco has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6591203
    Abstract: An improved fault location method may be used to locate faults associated with one or more conductors of an electric power transmission and distribution system. The method includes the steps of detecting a fault; determining whether pre-fault data are available and, if so, using the pre-fault data to compute a load impedance and estimate the fault location using the computed load impedance; if pre-fault data are not available, determining whether pre-fault data are available in a first memory location and, if so, using the pre-fault data to compute a load impedance and estimate the fault location using the computed load impedance; and if pre-fault data are not available in the first memory location, using a pre-fault load impedance from a second memory location in estimating the fault location.
    Type: Grant
    Filed: April 26, 2000
    Date of Patent: July 8, 2003
    Assignee: ABB, Inc.
    Inventors: Ratan Das, Joseph P. Benco
  • Patent number: 6489773
    Abstract: A protective relay utilizes a mechanism that averages a buffer of anticipated optimal closing times to provide for a more accurate method of determining when to permit the issuance of a breaker close signal. This is used in a Breaker Close Time (BCT) feature of performing synchronism checking in the electrical power industry (for example, in a generator protection device).
    Type: Grant
    Filed: November 21, 2000
    Date of Patent: December 3, 2002
    Assignee: ABB Inc.
    Inventors: Joseph P. Benco, James P. Sagazio
  • Patent number: 6115675
    Abstract: A protective relay system comprises current and voltage transducers 10, filters 12, and a multiplexor 14, the latter outputting an interleaved stream of analog phase current and voltage signal samples, as well as neutral current samples. The analog multiplex output by the multiplexor 14 is digitized by an analog-to-digital converter 16. The output of the analog-to-digital converter 16 is fed to a digital signal processing block 18. The multiplexor necessarily introduces a time-skew between the successive samples for each channel and also introduces a time-skew between the respective channels. The system corrects the sample-to-sample time-skew for each channel, and then derives current and voltage phasors from the time-skew corrected data.
    Type: Grant
    Filed: March 2, 1998
    Date of Patent: September 5, 2000
    Assignee: ABB Power T&D Company Inc.
    Inventors: Joseph P. Benco, James D. Stoupis
  • Patent number: 6081768
    Abstract: A method and system for detecting the peak of respective half-cycles of a sinusoidal waveform. The sinusoidal waveform is rectified and only sample points above a first threshold are analyzed. The peaks of each half-cycle are only accepted if they are above a second, greater threshold. Peaks below the second threshold are not accepted. The peaks themselves are detected by starting a counter at the first sample in the rectified waveform which is above the first threshold value. Once the rectified waveform descends below the first threshold, the counter is stopped and the maximum value of the previous k samples is the peak value, where k is the counter value for the successive samples above the first threshold. The peak value so determined is rejected if it is less than the second threshold value. On the other hand, when the peak value is above the second threshold, it is averaged with the last valid peak value (above the second threshold).
    Type: Grant
    Filed: September 15, 1997
    Date of Patent: June 27, 2000
    Assignee: ABB Power T&D Company Inc.
    Inventors: Yi Hu, David G. Hart, Joseph P. Benco, James D. Stoupis
  • Patent number: 5832413
    Abstract: A method for estimating phasors and tracking the frequency of a signal during frequency ramping is provided. The method uses a variable N-point DFT periodically to compute one or more phasors based on data acquired from one or more sampled signals. The period between DFT computations is a predetermined number of sample periods. After each DFT computation, the change in phasor angle between the current phasor estimate and the most previous phasor estimate is determined and used to estimate the instantaneous frequency of the signal. The current instantaneous frequency estimate and the most previous instantaneous frequency estimate are averaged to compute an average cycle frequency. In addition, a number of discrete frequencies and corresponding DFT windows based on a fixed sampling rate and a predetermined fundamental frequency of the signal are defined and used in estimating the instantaneous frequency.
    Type: Grant
    Filed: September 29, 1997
    Date of Patent: November 3, 1998
    Assignee: ABB Power T&D Company Inc.
    Inventors: Joseph P. Benco, Frederick P. Perfect, David G. Hart, James D. Stoupis