Patents by Inventor Joseph Patchett

Joseph Patchett has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12257573
    Abstract: The present invention relates to a catalyst for the oxidation of hydrocarbon and the selective catalytic reduction of nitrogen oxides, the catalyst comprising a substrate comprising an inlet end, an outlet end, a substrate axial length extending from the inlet end to the outlet end and a plurality of passages defined by internal walls of the substrate extending therethrough; and a coating disposed on the surface of the internal walls of the substrate, wherein the surface de-fines the interface between the passages and the internal walls, wherein the coating comprises a platinum group metal component supported on a first oxidic material and further comprises a mixed oxide of vanadium and one or more of iron, erbium, bismuth, cerium, europium, gadolinium, holmium, lanthanum, lutetium, neodymium, praseodymium, promethium, samarium, scandium, terbium, thulium, ytterbium, yttrium, molybdenum, tungsten, manganese, cobalt, nickel, copper, aluminum and antimony, wherein the mixed oxide is supported on a second oxidic
    Type: Grant
    Filed: September 29, 2020
    Date of Patent: March 25, 2025
    Assignee: BASF Mobile Emissions Catalysts LLC
    Inventors: Kevin Beard, Joseph A. Patchett, Edgar Viktor Huennekes, Jan Martin Becker, John K. Hochmuth
  • Publication number: 20240216864
    Abstract: The present invention relates to a catalyst for the selective catalytic reduction of NOx and for the cracking and conversion of a hydrocarbon, comprising a substrate comprising an inlet end, an outlet end, a substrate axial length extending from the inlet end to the outlet end and a plurality of passages defined by internal walls of the substrate extending therethrough: a coating disposed on the surface of the internal walls of the substrate, said coating comprising a platinum group metal, an 8-membered ring pore zeolitic material comprising one or more of copper and iron, and further comprising a 10- or more membered ring pore zeolitic material.
    Type: Application
    Filed: April 27, 2022
    Publication date: July 4, 2024
    Applicant: BASF Corporation
    Inventors: Robert Dorner, Jan Martin Becker, Joseph A Patchett
  • Publication number: 20240167410
    Abstract: The present invention relates to a catalytic article for purifying an exhaust gas containing nitrogen oxides, which comprises a first region containing a vanadium-based SCR catalyst, a second region containing a metal-promoted molecular sieve catalyst, and a third region containing a vanadium-based SCR catalyst, wherein at least part of the second region is located downstream of at least part of the first region and upstream of at least part of the third region in the exhaust gas flow direction, provided that no part of the second region is located upstream of the first region or downstream of the third region. The present invention also relates to a method and a system for treatment of an exhaust gas containing nitrogen oxides by selective catalytic reduction using the catalytic article.
    Type: Application
    Filed: March 9, 2022
    Publication date: May 23, 2024
    Inventors: Jiadi Zhang, Yijiang Wu, Liang Chen, Shuxin Lv, Yu Zhang, Edgar Viktor Huennekes, Kevin Beard, Joseph A Patchett, Jan Martin Becker, Martin Kalwei
  • Publication number: 20240091751
    Abstract: Zeolite catalysts and systems and methods for preparing and using zeolite catalysts having the CHA crystal structure are disclosed. The catalysts can be used to remove nitrogen oxides from a gaseous medium across a broad temperature range and exhibit hydrothermal stability at high-reaction temperatures. The zeolite catalysts include a zeolite carrier having a silica-to-alumina ratio from about 15:1 to about 256:1 and a copper to alumina ratio from about 0.25:1 to about 1:1.
    Type: Application
    Filed: November 20, 2023
    Publication date: March 21, 2024
    Applicant: BASF Corporation
    Inventors: Ivor Bull, Wen-Mei Xue, Patrick Burk, R. Samuel Boorse, William M. Jaglowski, Gerald Stephen Koermer, Ahmad Moini, Joseph A. Patchett, Joseph C. Dettling, Matthew Tyler Caudle
  • Publication number: 20240001354
    Abstract: The present invention relates to a catalyst for the oxidation of hydrocarbon and the selective catalytic reduction of nitrogen oxides, the catalyst comprising a substrate comprising an inlet end, an outlet end, a substrate axial length extending from the inlet end to the outlet end and a plurality of passages defined by internal walls of the substrate extending therethrough; and a coating disposed on the surface of the internal walls of the substrate, wherein the surface de-fines the interface between the passages and the internal walls, wherein the coating comprises a platinum group metal component supported on a first oxidic material and further comprises a mixed oxide of vanadium and one or more of iron, erbium, bismuth, cerium, europium, gadolinium, holmium, lanthanum, lutetium, neodymium, praseodymium, promethium, samarium, scandium, terbium, thulium, ytterbium, yttrium, molybdenum, tungsten, manganese, cobalt, nickel, copper, aluminum and antimony, wherein the mixed oxide is supported on a second oxidic
    Type: Application
    Filed: September 29, 2020
    Publication date: January 4, 2024
    Inventors: Kevin BEARD, Joseph A. PATCHETT, Edgar Viktor NEKES, Jan Martin BECKER, John K. HOCHMUTH
  • Patent number: 11845067
    Abstract: Zeolite catalysts and systems and methods for preparing and using zeolite catalysts having the CHA crystal structure are disclosed. The catalysts can be used to remove nitrogen oxides from a gaseous medium across a broad temperature range and exhibit hydrothermal stable at high reaction temperatures. The zeolite catalysts include a zeolite carrier having a silica to alumina ratio from about 15:1 to about 256:1 and a copper to alumina ratio from about 0.25:1 to about 1:1.
    Type: Grant
    Filed: November 15, 2022
    Date of Patent: December 19, 2023
    Assignee: BASF Corporation
    Inventors: Ivor Bull, Wen-Mei Xue, Patrick Burk, R. Samuel Boorse, William M. Jaglowski, Gerald Stephen Koermer, Ahmad Moini, Joseph A. Patchett, Joseph C. Dettling, Matthew Tyler Caudle
  • Publication number: 20230141207
    Abstract: The present invention relates to a catalyst for the selective catalytic reduction of nitrogen oxide, the catalyst comprising a first coating comprising a 12-membered ring pore zeolitic material comprising a first metal which is one or more of copper and iron, and a second coating comprising an 8-membered ring pore zeolitic material comprising a second metal which is one or more of copper and iron.
    Type: Application
    Filed: March 31, 2021
    Publication date: May 11, 2023
    Inventors: Edgar Viktor HUENNEKES, Petra CORDES, Jan Martin BECKER, Kevin BEARD, Nicholas MCGUIRE, Jaya L LAKSHMI, John K HOCHMUTH, Joseph A PATCHETT, Kenneth E VOSS
  • Publication number: 20230129815
    Abstract: The present invention relates to a process for preparing a catalyst for the selective catalytic reduction of nitrogen oxide comprising, among other steps, preparing a second aqueous mixture comprising water and an iron salt; and disposing the second mixture on the substrate obtained according to (ii), comprising a coating comprising a zeolitic material comprising copper, over y % of the substrate axial length from the inlet end to the outlet end of the substrate, wherein y is in the range of from 10 to x, obtaining a substrate comprising, in a first zone, the coating comprising a zeolitic material comprising copper and over y % of the substrate axial length an iron salt; and, if x > y, in a second zone extending from y % to x % of the substrate axial length from the inlet end to the outlet end, the coating comprising a zeolitic material comprising copper.
    Type: Application
    Filed: March 30, 2021
    Publication date: April 27, 2023
    Inventors: Edgar Viktor HUENNEKES, Nicholas MCGUIRE, Petra CORDES, Kevin BEARD, Jan Martin BECKER, John K HOCHMUTH, Kenneth E VOSS, Joseph A PATCHETT, Andreas R MUNDING
  • Publication number: 20230081351
    Abstract: Zeolite catalysts and systems and methods for preparing and using zeolite catalysts having the CHA crystal structure are disclosed. The catalysts can be used to remove nitrogen oxides from a gaseous medium across a broad temperature range and exhibit hydrothermal stable at high reaction temperatures. The zeolite catalysts include a zeolite carrier having a silica to alumina ratio from about 15:1 to about 256:1 and a copper to alumina ratio from about 0.25:1 to about 1:1.
    Type: Application
    Filed: November 15, 2022
    Publication date: March 16, 2023
    Inventors: Ivor BULL, Wen-Mei XUE, Patrick BURK, R. Samuel BOORSE, William M. JAGLOWSKI, Gerald Stephen KOERMER, Ahmad MOINI, Joseph A. PATCHETT, Joseph C. DETTLING, Matthew Tyler CAUDLE
  • Patent number: 11529619
    Abstract: Zeolite catalysts and systems and methods for preparing and using zeolite catalysts having the CHA crystal structure are disclosed. The catalysts can be used to remove nitrogen oxides from a gaseous medium across a broad temperature range and exhibit hydrothermal stable at high reaction temperatures. The zeolite catalysts include a zeolite carrier having a silica to alumina ratio from about 15:1 to about 256:1 and a copper to alumina ratio from about 0.25:1 to about 1:1.
    Type: Grant
    Filed: April 22, 2020
    Date of Patent: December 20, 2022
    Assignee: BASF Corporation
    Inventors: Ivor Bull, Wen-Mei Xue, Patrick Burk, R. Samuel Boorse, William M. Jaglowski, Gerald Stephen Koermer, Ahmad Moini, Joseph A. Patchett, Joseph C. Dettling, Matthew Tyler Caudle
  • Publication number: 20220288563
    Abstract: The present invention relates to an aqueous suspension comprising water, a source of one or more of a vanadium oxide and a tungsten oxide, and particles of an oxidic support; wherein the particles of the aqueous suspension exhibit a polymodal particle size distribution characterized by a particle size distribution curve comprising a first peak with a maximum M(I) in the range of from 0.5 to 15 micrometers and a second peak with a maximum M(II) in the range of from 1 to 40 micrometers, wherein (M(I)/?m):(M(II)/?m)<1:1.
    Type: Application
    Filed: May 5, 2020
    Publication date: September 15, 2022
    Inventors: Edgar Viktor HUENNEKES, Petra CORDES, Jan Martin BECKER, Ruediger WOLFF, Joseph A. PATCHETT, Nicholas MCGUIRE, Edith SCHNEIDER, Kevin BEARD
  • Patent number: 11331653
    Abstract: The present invention is directed to selective catalytic reduction catalysts that combine SCR activity with NOx absorber activity. In particular, the disclosed catalytic article includes a substrate having a first and a second material disposed thereon, wherein the first material includes a selective catalytic reduction (SCR) catalyst composition and the second material includes a nitrogen oxides (NOx) absorber composition, wherein the NOx absorber composition does not substantially oxidize ammonia, and wherein the catalytic article is effective to abate NOx from an engine exhaust gas stream. Emission treatment systems for treating an exhaust gas including a catalytic article of the invention are provided, particularly systems that include an injector adapted for the addition of ammonia to the exhaust gas stream located upstream of the catalytic article.
    Type: Grant
    Filed: April 9, 2020
    Date of Patent: May 17, 2022
    Assignee: BASF CORPORATION
    Inventors: Joseph A Patchett, Xinyi Wei
  • Patent number: 11266977
    Abstract: The present invention relates to a selective catalytic reduction catalyst for the treatment of an exhaust gas of a diesel engine comprising (i) a flow-through substrate comprising an inlet end, an outlet end, a substrate axial length extending from the inlet end to the outlet end and a plurality of passages defined by internal walls of the flow-through substrate extending therethrough; (II) a coating disposed on the surface of the internal walls of the substrate, where-in the surface defines the interface between the passages and the internal walls, wherein the coating comprises a vanadium oxide supported on an oxidic material comprising titania, and further comprises a mixed oxide of vanadium and one or more of iron, erbium, bismuth, cerium, europium, gadolinium, holmium, lanthanum, lutetium, neodymium, praseodymium, promethium, samarium, scandium, terbium, thulium, ytterbium, yttrium, molybdenum, tungsten, manganese, cobalt, nickel, copper, aluminum and antimony.
    Type: Grant
    Filed: July 30, 2019
    Date of Patent: March 8, 2022
    Assignee: BASF Corporation
    Inventors: Edgar Viktor Huennekes, Joseph A Patchett, Petra Cordes, Kevin David Beard, Jan Martin Becker
  • Publication number: 20210362130
    Abstract: The present invention relates to a selective catalytic reduction catalyst for the treatment of an exhaust gas of a diesel engine comprising (i) a flow-through substrate comprising an inlet end, an outlet end, a substrate axial length extending from the inlet end to the outlet end and a plurality of passages defined by internal walls of the flow-through substrate extending therethrough; (II) a coating disposed on the surface of the internal walls of the substrate, where-in the surface defines the interface between the passages and the internal walls, wherein the coating comprises a vanadium oxide supported on an oxidic material comprising titania, and further comprises a mixed oxide of vanadium and one or more of iron, erbium, bismuth, cerium, europium, gadolinium, holmium, lanthanum, lutetium, neodymium, praseodymium, promethium, samarium, scandium, terbium, thulium, ytterbium, yttrium, molybdenum, tungsten, manganese, cobalt, nickel, copper, aluminum and antimony.
    Type: Application
    Filed: July 30, 2019
    Publication date: November 25, 2021
    Applicant: BASF Corporation
    Inventors: Edgar Viktor HUENNEKES, Joseph A PATCHETT, Petra CORDES, Kevin David BEARD, Jan Martin BECKER
  • Patent number: 11154847
    Abstract: The present invention relates to a catalytic article comprising a substrate having a catalyst composition disposed thereon, wherein the catalyst composition comprises a platinum group metal impregnated onto a porous support and a selective catalytic reduction catalyst, wherein the catalyst composition is substantially free of platinum; and wherein the catalytic article is effective in the abatement of nitrogen oxides (NOx) and hydrocarbons (HCs). The present invention further relates to exhaust gas treatment systems for treating an exhaust gas stream exiting a diesel engine.
    Type: Grant
    Filed: June 8, 2018
    Date of Patent: October 26, 2021
    Assignee: BASF Corporation
    Inventors: Joseph A. Patchett, Kevin Beard, Edgar Viktor Huennekes, Robert Dorner, Kevin A Hallstrom, Ansgar Wille, Kenneth E Voss, Martin Kalwei
  • Publication number: 20210069688
    Abstract: The present invention relates to a catalytic article comprising a substrate having a catalyst composition disposed thereon, wherein the catalyst composition comprises a platinum group metal impregnated onto a porous support and a selective catalytic reduction catalyst, wherein the catalyst composition is substantially free of platinum; and wherein the catalytic article is effective in the abatement of nitrogen oxides (NOx) and hydrocarbons (HCs). The present invention further relates to exhaust gas treatment systems for treating an exhaust gas stream exiting a diesel engine.
    Type: Application
    Filed: June 8, 2018
    Publication date: March 11, 2021
    Applicant: BASF Corporation
    Inventors: Joseph A. PATCHETT, Kevin BEARD, Edgar Viktor HUENNEKES, Robert DORNER, Kevin A. HALLSTROM, Ansgar WILLE, Kenneth E. VOSS, Martin KALWEI
  • Publication number: 20210008531
    Abstract: Provided is a catalyst article for simultaneously remediating the nitrogen oxides (NOx), particulate matter, and gaseous hydrocarbons present in diesel engine exhaust streams. The catalyst article has a soot filter coated with a material effective in the Selective Catalytic Reduction (SCR) of NOx by a reductant, e.g., ammonia.
    Type: Application
    Filed: September 29, 2020
    Publication date: January 14, 2021
    Inventors: Joseph A. Patchett, Joseph C. Dettling, Elizabeth A. Przybylski
  • Patent number: 10857529
    Abstract: Provided is a catalyst article for simultaneously remediating the nitrogen oxides (NOx), particulate matter, and gaseous hydrocarbons present in diesel engine exhaust streams. The catalyst article has a soot filter coated with a material effective in the Selective Catalytic Reduction (SCR) of NOx by a reductant, e.g., ammonia.
    Type: Grant
    Filed: December 4, 2019
    Date of Patent: December 8, 2020
    Assignee: BASF CORPORATION
    Inventors: Joseph A. Patchett, Joseph C. Dettling, Elizabeth A. Przybylski
  • Publication number: 20200306731
    Abstract: The present disclosure provides catalytic materials formed of co-precipitates of vanadium, tungsten, and titanium, catalytic articles formed using such co-precipitates, and methods of making such precipitates. The co-precipitates may be used in the form of calcined particles, and catalytic articles incorporating coatings formed of the co-precipitate can exhibit improved adhesion and performance.
    Type: Application
    Filed: June 8, 2017
    Publication date: October 1, 2020
    Inventors: Gary A. Gramiccioni, Pascaline Tran, Joseph A. Patchett, Thomas A. Gegan
  • Publication number: 20200261895
    Abstract: Zeolite catalysts and systems and methods for preparing and using zeolite catalysts having the CHA crystal structure are disclosed. The catalysts can be used to remove nitrogen oxides from a gaseous medium across a broad temperature range and exhibit hydrothermal stable at high reaction temperatures. The zeolite catalysts include a zeolite carrier having a silica to alumina ratio from about 15:1 to about 256:1 and a copper to alumina ratio from about 0.25:1 to about 1:1.
    Type: Application
    Filed: April 22, 2020
    Publication date: August 20, 2020
    Inventors: Ivor Bull, Wen-Mei Xue, Patrick Burk, R. Samuel Boorse, William M. Jaglowski, Gerald Stephen Koermer, Ahmad Moini, Joseph A. Patchett, Joseph C. Dettling, Matthew Tyler Caudle