Patents by Inventor Joseph Philip Klosinski

Joseph Philip Klosinski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170167496
    Abstract: The present application provides an inlet bleed heat control system for a compressor of a gas turbine engine. The inlet bleed heat control system provides an inlet bleed heat manifold and an ejector in communication with the inlet bleed heat manifold such that the ejector is in communication with a flow of compressor discharge air and a flow of ambient air.
    Type: Application
    Filed: December 10, 2015
    Publication date: June 15, 2017
    Inventors: JOSEPH PHILIP KLOSINSKI, SANJI EKANAYAKE, JOHN CLISBY BLANTON, ALSTON ILFORD SCIPIO
  • Publication number: 20170167300
    Abstract: A system for controlling gas turbine output for a gas turbine power plant is disclosed herein. The power plant includes a gas turbine including a combustor downstream from a compressor, a turbine downstream from the combustor and an exhaust duct downstream from the outlet of the turbine. The exhaust duct receives exhaust gas from the turbine outlet. The system further includes an exhaust damper operably connected to a downstream end of the exhaust duct. The exhaust damper increases backpressure at the turbine outlet and restricts axial exit velocity of the exhaust gas exiting the turbine outlet when the exhaust damper is partially closed. A method for controlling gas turbine output is also provided herein.
    Type: Application
    Filed: December 15, 2015
    Publication date: June 15, 2017
    Inventors: George Vargese Mathai, Alston Ilford Scipio, Harold Lamar Jordan, JR., Sanji Ekanayake, Joseph Philip Klosinski
  • Publication number: 20170167379
    Abstract: A power plant includes a compressor, a combustor downstream from the compressor and a turbine disposed downstream from the combustor. The compressor includes a compressor extraction port. The turbine includes a turbine extraction port that is in fluid communication with a hot gas path of the turbine and which provides a flow path for a stream of combustion gas to flow out of the turbine. An exhaust duct is disposed downstream from the turbine and receives exhaust gas from the turbine. A static mixer coupled to the turbine extraction port and to the compressor extraction port cools the stream of combustion gas upstream from the exhaust duct. The cooled combustion gas flows into the exhaust duct at a higher temperature than the exhaust gas and mixes with the exhaust gas within the exhaust duct to provide a heated exhaust gas mixture to a heat exchanger downstream from the exhaust duct.
    Type: Application
    Filed: December 15, 2015
    Publication date: June 15, 2017
    Inventors: Alston Ilford Scipio, Sanji Ekanayake, Jason Brian Shaffer, Joseph Philip Klosinski, George Vargese Mathai
  • Publication number: 20170167380
    Abstract: A power plant includes a first gas turbine and a second gas turbine. The first gas turbine includes a turbine extraction port that is in fluid communication with a hot gas path of the turbine and an exhaust duct that receives exhaust gas from the turbine outlet. The power plant further includes a first gas cooler having a primary inlet fluidly coupled to the turbine extraction port, a secondary inlet fluidly coupled to a coolant supply system and an outlet in fluid communication with the exhaust duct. The first gas cooler provides a cooled combustion gas to the exhaust duct which mixes with the exhaust gas to provide an exhaust gas mixture to a first heat exchanger downstream from the exhaust duct. At least one of a compressor and a turbine of the second gas turbine are in fluid communication with the outlet of the first gas cooler.
    Type: Application
    Filed: December 15, 2015
    Publication date: June 15, 2017
    Inventors: Joseph Philip Klosinski, Alston Ilford Scipio, Sanji Ekanayake, Paul Robert Fernandez
  • Publication number: 20170107845
    Abstract: A gas turbine engine system includes a gas turbine engine with a rotating element, at least one primary rotor shaft coupled to the rotating element, and a primary generator coupled to the at least one primary rotor shaft. The system further includes at least one auxiliary rotor shaft coupled to the at least one primary rotor shaft, such that rotation of the at least one primary rotor shaft causes rotation of the at least one auxiliary rotor shaft. The at least one auxiliary rotor shaft is oriented substantially perpendicularly to the at least one primary rotor shaft. An auxiliary generator is coupled to the at least one auxiliary rotor shaft, such that the auxiliary generator is in parallel configuration to the primary generator.
    Type: Application
    Filed: October 15, 2015
    Publication date: April 20, 2017
    Inventors: Joseph Philip Klosinski, Alston Ilford Scipio, James Oldham Lambert, Karl C. Tornroos, Sanji Ekanayake
  • Publication number: 20160273396
    Abstract: A power generation system includes: a first gas turbine system including a first turbine component, a first integral compressor and a first combustor to which air from the first integral compressor and fuel are supplied, the first combustor arranged to supply hot combustion gases to the first turbine component, and the first integral compressor having a flow capacity greater than an intake capacity of the first combustor and/or the first gas turbine component, creating an excess air flow. A second gas turbine system may include similar components to the first except but without excess capacity in its compressor. A control valve system controls flow of the excess air flow from the first gas turbine system to the second gas turbine system. A heat exchanger may be coupled to the excess air flow path for exchanging heat with the excess air flow.
    Type: Application
    Filed: March 19, 2015
    Publication date: September 22, 2016
    Inventors: Sanji Ekanayake, William Theadore Fisher, Joseph Philip Klosinski, Mark Stefan Maier, George Vargese Mathai, Ryan Eric Obenhoff, Robert Michael Orenstein, Alston Ilford Scipio, Gordon Raymond Smith
  • Publication number: 20160273394
    Abstract: A power generation system includes: a first gas turbine system including a first turbine component, a first integral compressor and a first combustor to which air from the first integral compressor and fuel are supplied, the first combustor arranged to supply hot combustion gases to the first turbine component, and the first integral compressor having a flow capacity greater than an intake capacity of the first combustor and/or the first turbine component, creating an excess air flow. A second gas turbine system may include similar components to the first except but without excess capacity in its compressor. A control valve system controls flow of the excess air flow to the second gas turbine system. An eductor may be positioned in the excess air flow path for using the excess air flow as a motive fluid to augment the excess air flow to the second gas turbine with additional air.
    Type: Application
    Filed: March 19, 2015
    Publication date: September 22, 2016
    Inventors: Sanji Ekanayake, Dale Joel Davis, Joseph Philip Klosinski, Robert Michael Orenstein, Alston Ilford Scipio
  • Publication number: 20160273398
    Abstract: A power generation system includes: a first gas turbine system including a first turbine component, a first integral compressor and a first combustor to which air from the first integral compressor and fuel are supplied, the first combustor arranged to supply hot combustion gases to the first turbine component, and the first integral compressor having a flow capacity greater than an intake capacity of the first combustor and/or the first turbine component, creating an excess air flow. A second gas turbine system may include similar components to the first except but without excess capacity in its compressor. A control valve system controls flow of the excess air flow from the first gas turbine system to the second gas turbine system. A storage vessel may be coupled to the excess air flow path for augmenting the excess air flow with additional air during a peak demand period.
    Type: Application
    Filed: March 19, 2015
    Publication date: September 22, 2016
    Inventors: Sanji Ekanayake, Joseph Philip Klosinski, Robert Michael Orenstein, Alston Ilford Scipio, Lisa Anne Wichmann
  • Publication number: 20160273401
    Abstract: A power generation system may include a gas turbine system including a first turbine component, an integral compressor and a combustor to which air from the integral compressor and fuel are supplied. The combustor is arranged to supply hot combustion gases to the turbine component, and the integral compressor has a flow capacity greater than an intake capacity of the combustor and/or the turbine component, creating an excess air flow. A first control valve system controls flow of the excess air flow along an excess air flow path to a process air demand. An eductor positioned in the excess air flow path uses the excess air flow as a motive force to augment the excess air flow with additional air, creating an augmented excess air flow.
    Type: Application
    Filed: March 19, 2015
    Publication date: September 22, 2016
    Inventors: Sanji Ekanayake, William Theadore Fisher, Joseph Philip Klosinski, Peter Wallace Robson, Alston Ilford Scipio
  • Publication number: 20160258327
    Abstract: A system includes a controller communicatively coupled to a compressor. The controller is configured to sense an exhaust temperature of a gas turbine system fluidly coupled to the compressor and derive a setpoint based on the sensed exhaust temperature. The controller is also configured to actuate an inlet bleed heat valve based on the derived setpoint and an ambient temperature. The inlet bleed heat valve directs a compressor fluid from the compressor into a fluid intake system fluidly coupled to the compressor upstream of the compressor and configured to intake a fluid.
    Type: Application
    Filed: March 4, 2015
    Publication date: September 8, 2016
    Inventors: Joseph Philip Klosinski, Alston Ilford Scipio, Sanji Ekanayake, Julio Enrique Mestroni, George Vargese Mathai, Michael Anthony Cocca
  • Publication number: 20160123190
    Abstract: A method and system to extract gas from a gas turbine having at least one gas extraction mechanism placed at the turbine section that extracts exhaust gas directly from the turbine stages through the turbine casing, providing a first exhaust gas path that extends from the turbine section through the exhaust section to the exhaust gas outlet, and a second exhaust gas path for extracted exhaust gas extending directly from the turbine stages inside the turbine casing to a duct outside of the turbine casing. The gas extraction system and method can be applied to a cogeneration system.
    Type: Application
    Filed: November 3, 2014
    Publication date: May 5, 2016
    Inventors: Joseph Philip Klosinski, Michael Anthony Cocca, Alston Ilford Scipio, Patrick C. Bowling, Sanji Ekanayake
  • Publication number: 20160040596
    Abstract: A turbomachine system includes a compressor portion having at least one compressor extraction, a turbine portion operatively connected to the compressor portion, and a combustor assembly including at least one combustor fluidically connected to the compressor portion and the turbine portion. A heat recovery steam generator (HRSG) is fluidically connected to the turbine portion, and an air inlet system is fluidically connected to the compressor portion. An inlet bleed heat (IBH) system is fluidically connected to each of the compressor portion, the air inlet system and the HRSG. An inlet bleed heat (IBH) system includes a first conduit having a first valve fluidically connecting the compressor extraction and the air inlet system, and a second conduit including a second valve connecting one of the HRSG and a secondary stream source with the first conduit.
    Type: Application
    Filed: August 8, 2014
    Publication date: February 11, 2016
    Inventors: Joseph Philip Klosinski, Sanji Ekanayake, Alston Ilford Scipio