Patents by Inventor Joseph R. Genito

Joseph R. Genito has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090042012
    Abstract: A method for producing an aluminum foam product wherein reactive gas producing particles are introduced into an aluminum alloy melt under controlled conditions and subjected to agitation to induce the production of foam-stabilizing by-products, and, under certain conditions, the production of gases used to produce the molten metal foam itself. Foam products produced through this method have intrinsically formed metal oxides and other solid particles dispersed therein and are devoid of the large extrinsically added stabilizing ceramic additions traditionally used in the production of aluminum foams. The invention claims a rapid, single step method for producing an inoculated, foamable melt using low cost precursor materials.
    Type: Application
    Filed: October 9, 2008
    Publication date: February 12, 2009
    Inventors: J. Daniel Bryant, Jacob A. Kallivayalil, Mark D. Crowley, Joseph R. Genito, Larry F. Wieserman, Deborah Murphy Wilhelmy, William E. Boren, JR.
  • Patent number: 7452402
    Abstract: A method for producing an aluminum foam product wherein reactive gas producing particles are introduced into an aluminum alloy melt under controlled conditions and subjected to agitation to induce the production of foam-stabilizing by-products, and, under certain conditions, the production of gases used to produce the molten metal foam itself. Foam products produced through this method have intrinsically formed metal oxides and other solid particles dispersed therein and are devoid of the large extrinsically added stabilizing ceramic additions traditionally used in the production of aluminum foams. The invention claims a rapid, single step method for producing an inoculated, foamable melt using low cost precursor materials.
    Type: Grant
    Filed: April 29, 2005
    Date of Patent: November 18, 2008
    Assignee: Alcoa Inc.
    Inventors: J. Daniel Bryant, Jacob A. Kallivayalil, Mark D. Crowley, Joseph R. Genito, Larry F. Wieserman, Deborah Murphy Wilhelmy, William E. Boren, Jr.
  • Publication number: 20040163492
    Abstract: The present invention is directed to porous metal products including ceramic particles, where the initial surface layer (12) of the particles (10) is modified with agents that interact with surface oxygen, oxides and/or hydroxides to improve the wettability of particles within a molten metal alloy, and where the ceramic particles (10) are modified (14) by contacting the particles with a surface-modifying agent and heating the ceramic particles and surface-modifying agent to an elevated temperature at which the ceramic particle remains substantially stable and the surface-modifying agent becomes at least partially thermally unstable, to cause a reacted layer (16).
    Type: Application
    Filed: March 2, 2004
    Publication date: August 26, 2004
    Inventors: Mark D. Crowley, J. Daniel Bryant, David D. Leon, Jacob A. Kallivayalil, Joseph R. Genito, Patricia A. Stewart, Dorothy M. Schrall, Larry F. Wieserman, Larry B. Davis
  • Patent number: 5270278
    Abstract: A hybrid adsorbent including particles of porous alumina having deposited thereon an ultrathin layer of carbon atoms which is essentially monomolecular. The carbon layer is produced by cracking a suitable hydrocarbon, preferably a gas, in contact with a hot turbulent fluidized bed of alumina particles. The hybrid adsorbent has the unique property of adsorbing more organic impurities than an equivalent weight of active carbon, and also oxalate ions which are not ordinarily adsorbed by carbon.
    Type: Grant
    Filed: February 21, 1992
    Date of Patent: December 14, 1993
    Assignee: Aluminum Company of America
    Inventors: Chanakya Misra, Joseph R. Genito
  • Patent number: 5093092
    Abstract: An economical process for the removal and destruction of organic impurities present in Bayer process liquor depends upon the use of a hybrid adsorbent. The hybrid adsorbent consists essentially of porous essentially anhydrous particles of alumina having deposited on the surfaces thereof including the pores, an ultrathin layer of carbon atoms which is essentially monomolecular. Such carbonization is effected by cracking a suitable hydrocarbon, preferably a gas, in contact with a hot turbulent fluidized bed of alumina particles. This layer has the unique property of adsorbing far more impurities than the equivalent weight of active carbon, and also oxalate ions which are known not to be adsorbed on carbon. As an ultrathin layer it is too thin to change either the average pore volume or the surface area of the alumina particles substantially, from before they are carbonized.
    Type: Grant
    Filed: February 28, 1991
    Date of Patent: March 3, 1992
    Assignee: Aluminum Company of America
    Inventors: Chanakya Misra, Joseph R. Genito