Patents by Inventor Joseph R. Greco

Joseph R. Greco has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10211324
    Abstract: Various particular embodiments include an integrated circuit (IC) structure having: a stack region; and a silicon substrate underlying and contacting the stack region, the silicon substrate including: a silicon region including a doped subcollector region; a set of isolation regions overlying the silicon region; a base region between the set of isolation regions and below the stack region, the base region including an intrinsic base contacting the stack region, an extrinsic base contacting the intrinsic base and the stack region, and an amorphized extrinsic base contact region contacting the extrinsic base; a collector region between the set of isolation regions; an undercut collector-base region between the set of isolation regions and below the base region; and a collector contact region contacting the collector region under the intrinsic base and the collector-base region via the doped subcollector region.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: February 19, 2019
    Assignee: International Business Machines Corporation
    Inventors: Joseph R. Greco, Qizhi Liu, Aaron L. Vallett, Robert F. Vatter
  • Publication number: 20180069105
    Abstract: Various particular embodiments include an integrated circuit (IC) structure having: a stack region; and a silicon substrate underlying and contacting the stack region, the silicon substrate including: a silicon region including a doped subcollector region; a set of isolation regions overlying the silicon region; a base region between the set of isolation regions and below the stack region, the base region including an intrinsic base contacting the stack region, an extrinsic base contacting the intrinsic base and the stack region, and an amorphized extrinsic base contact region contacting the extrinsic base; a collector region between the set of isolation regions; an undercut collector-base region between the set of isolation regions and below the base region; and a collector contact region contacting the collector region under the intrinsic base and the collector-base region via the doped subcollector region.
    Type: Application
    Filed: October 27, 2017
    Publication date: March 8, 2018
    Inventors: Joseph R. Greco, Qizhi Liu, Aaron L. Vallett, Robert F. Vatter
  • Patent number: 9837514
    Abstract: Various particular embodiments include an integrated circuit (IC) structure having: a stack region; and a silicon substrate underlying and contacting the stack region, the silicon substrate including: a silicon region including a doped subcollector region; a set of isolation regions overlying the silicon region; a base region between the set of isolation regions and below the stack region, the base region including an intrinsic base contacting the stack region, an extrinsic base contacting the intrinsic base and the stack region, and an amorphized extrinsic base contact region contacting the extrinsic base; a collector region between the set of isolation regions; an undercut collector-base region between the set of isolation regions and below the base region; and a collector contact region contacting the collector region under the intrinsic base and the collector-base region via the doped subcollector region.
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: December 5, 2017
    Assignee: International Business Machines Corporation
    Inventors: Joseph R. Greco, Qizhi Liu, Aaron L. Vallett, Robert F. Vatter
  • Patent number: 9735259
    Abstract: Various particular embodiments include an integrated circuit (IC) structure including: a stack region; and a silicon substrate underlying and contacting the stack region, the silicon substrate including: a silicon region including a doped subcollector region; a set of isolation regions overlying the silicon region; a base region between the set of isolation regions and below the stack region, the base region including an intrinsic base contacting the stack region, an extrinsic base contacting the intrinsic base and the stack region, and an amorphized extrinsic base contact region contacting the extrinsic base; a collector region between the set of isolation regions; an undercut collector-base region between the set of isolation regions and below the base region; and a collector contact region contacting the collector region under the intrinsic base and the collector-base region via the doped subcollector region.
    Type: Grant
    Filed: August 25, 2015
    Date of Patent: August 15, 2017
    Assignee: International Business Machines Corporation
    Inventors: Joseph R. Greco, Qizhi Liu, Aaron L. Vallett, Robert F. Vatter
  • Publication number: 20160197167
    Abstract: Various particular embodiments include an integrated circuit (IC) structure having: a stack region; and a silicon substrate underlying and contacting the stack region, the silicon substrate including: a silicon region including a doped subcollector region; a set of isolation regions overlying the silicon region; a base region between the set of isolation regions and below the stack region, the base region including an intrinsic base contacting the stack region, an extrinsic base contacting the intrinsic base and the stack region, and an amorphized extrinsic base contact region contacting the extrinsic base; a collector region between the set of isolation regions; an undercut collector-base region between the set of isolation regions and below the base region; and a collector contact region contacting the collector region under the intrinsic base and the collector-base region via the doped subcollector region.
    Type: Application
    Filed: March 18, 2016
    Publication date: July 7, 2016
    Inventors: Joseph R. Greco, Qizhi Liu, Aaron L. Vallett, Robert F. Vatter
  • Patent number: 9324828
    Abstract: Various particular embodiments include a method of amorphizing a portion of silicon underneath the N+ base section of a PNP transistor structure. After amorphizing, the method can include selectively etching that implant-amorphized silicon to trim the collector-base area and collector-base junction. The selective etching is enhanced because the unimplanted silicon region etches at a distinct rate than the implant-amorphized silicon, allowing for control over the trimming of the collector-base junction.
    Type: Grant
    Filed: August 12, 2014
    Date of Patent: April 26, 2016
    Assignee: International Business Machines Corporation
    Inventors: Joseph R. Greco, Qizhi Liu, Aaron L. Vallett, Robert F. Vatter
  • Publication number: 20160049492
    Abstract: Various particular embodiments include a method of amorphizing a portion of silicon underneath the N+ base section of a PNP transistor structure. After amorphizing, the method can include selectively etching that implant-amorphized silicon to trim the collector-base area and collector-base junction. The selective etching is enhanced because the unimplanted silicon region etches at a distinct rate than the implant-amorphized silicon, allowing for control over the trimming of the collector-base junction.
    Type: Application
    Filed: August 12, 2014
    Publication date: February 18, 2016
    Inventors: Joseph R. Greco, Qizhi Liu, Aaron L. Vallett, Robert F. Vatter
  • Publication number: 20160049501
    Abstract: Various particular embodiments include an integrated circuit (IC) structure including: a stack region; and a silicon substrate underlying and contacting the stack region, the silicon substrate including: a silicon region including a doped subcollector region; a set of isolation regions overlying the silicon region; a base region between the set of isolation regions and below the stack region, the base region including an intrinsic base contacting the stack region, an extrinsic base contacting the intrinsic base and the stack region, and an amorphized extrinsic base contact region contacting the extrinsic base; a collector region between the set of isolation regions; an undercut collector-base region between the set of isolation regions and below the base region; and a collector contact region contacting the collector region under the intrinsic base and the collector-base region via the doped subcollector region.
    Type: Application
    Filed: August 25, 2015
    Publication date: February 18, 2016
    Inventors: Joseph R. Greco, Qizhi Liu, Aaron L. Vallett, Robert F. Vatter
  • Patent number: 9214318
    Abstract: An electromagnetic electron reflector, an ion implanter having an electromagnetic reflector and a method of implantation using the ion implanter. The electromagnetic electron reflector includes a frame; permanent magnets within the frame; a center aperture within the frame and electrically isolated by first gaps from the frame and the permanent magnets and fixed in position by dielectric feed throughs, first cup shields integrally formed on the top and bottom edges of the center aperture, the dielectric feed throughs nested within the first cup shields; second cup shields integrally formed on inside surfaces of the top and bottom of the frame, the second cup shields nested within respective first cup shields; entrance and exit apertures attached to the frame and an electrical conductor passing through at least one of the dielectric feed throughs and electrically contacting the center aperture.
    Type: Grant
    Filed: July 25, 2014
    Date of Patent: December 15, 2015
    Assignee: International Business Machines Corporation
    Inventors: Eric J. Caprarola, Robert C. Churchill, Joseph R. Greco, Nicholas Mone, Jr.
  • Patent number: 8492294
    Abstract: A semiconductor-on-insulator substrate and a related semiconductor structure, as well as a method for fabricating the semiconductor-on-insulator substrate and the related semiconductor structure, provide for a multiple order radio frequency harmonic suppressing region located and formed within a base semiconductor substrate at a location beneath an interface of a buried dielectric layer with the base semiconductor substrate within the semiconductor-on-insulator substrate. The multiple order radio frequency harmonic suppressing region may comprise an ion implanted atom, such as but not limited to a noble gas atom, to provide a suppressed multiple order radio frequency harmonic when powering a radio frequency device, such as but not limited to a radio frequency complementary metal oxide semiconductor device (or alternatively a passive device), located and formed within and upon a surface semiconductor layer within the semiconductor structure.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: July 23, 2013
    Assignee: International Business Machines Corporation
    Inventors: Joseph R. Greco, Kevin Munger, Richard A. Phelps, Jennifer C. Robbins, William Savaria, James A. Slinkman, Randy L. Wolf
  • Publication number: 20130005157
    Abstract: A semiconductor-on-insulator substrate and a related semiconductor structure, as well as a method for fabricating the semiconductor-on-insulator substrate and the related semiconductor structure, provide for a multiple order radio frequency harmonic suppressing region located and formed within a base semiconductor substrate at a location beneath an interface of a buried dielectric layer with the base semiconductor substrate within the semiconductor-on-insulator substrate. The multiple order radio frequency harmonic suppressing region may comprise an ion implanted atom, such as but not limited to a noble gas atom, to provide a suppressed multiple order radio frequency harmonic when powering a radio frequency device, such as but not limited to a radio frequency complementary metal oxide semiconductor device (or alternatively a passive device), located and formed within and upon a surface semiconductor layer within the semiconductor structure.
    Type: Application
    Filed: September 10, 2012
    Publication date: January 3, 2013
    Applicant: International Business Machines Corporation
    Inventors: Joseph R. Greco, Kevin Munger, Richard A. Phelps, Jennifer C. Robbins, William Savaria, James A. Slinkman, Randy L. Wolf
  • Patent number: 8299537
    Abstract: A semiconductor-on-insulator substrate and a related semiconductor structure, as well as a method for fabricating the semiconductor-on-insulator substrate and the related semiconductor structure, provide for a multiple order radio frequency harmonic suppressing region located and formed within a base semiconductor substrate at a location beneath an interface of a buried dielectric layer with the base semiconductor substrate within the semiconductor-on-insulator substrate. The multiple order radio frequency harmonic suppressing region may comprise an ion implanted atom, such as but not limited to a noble gas atom, to provide a suppressed multiple order radio frequency harmonic when powering a radio frequency device, such as but not limited to a radio frequency complementary metal oxide semiconductor device (or alternatively a passive device), located and formed within and upon a surface semiconductor layer within the semiconductor structure.
    Type: Grant
    Filed: February 11, 2009
    Date of Patent: October 30, 2012
    Assignee: International Business Machines Corporation
    Inventors: Joseph R. Greco, Kevin Munger, Richard A. Phelps, Jennifer C. Robbins, William Savaria, James A. Slinkman, Randy L. Wolf
  • Patent number: 7777302
    Abstract: A method of modulating grain size in a polysilicon layer and devices fabricated with the method. The method includes forming the layer of polysilicon on a substrate; and performing an ion implantation of a polysilicon grain size modulating species into the polysilicon layer such that an average resultant grain size of the implanted polysilicon layer after performing a pre-determined anneal is higher or lower than an average resultant grain size than would be obtained after performing the same pre-determined anneal on the polysilicon layer without a polysilicon grain size modulating species ion implant.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: August 17, 2010
    Assignee: International Business Machines Corporation
    Inventors: Peter J. Geiss, Joseph R. Greco, Richard S. Kontra, Emily Lanning
  • Publication number: 20100200927
    Abstract: A semiconductor-on-insulator substrate and a related semiconductor structure, as well as a method for fabricating the semiconductor-on-insulator substrate and the related semiconductor structure, provide for a multiple order radio frequency harmonic suppressing region located and formed within a base semiconductor substrate at a location beneath an interface of a buried dielectric layer with the base semiconductor substrate within the semiconductor-on-insulator substrate. The multiple order radio frequency harmonic suppressing region may comprise an ion implanted atom, such as but not limited to a noble gas atom, to provide a suppressed multiple order radio frequency harmonic when powering a radio frequency device, such as but not limited to a radio frequency complementary metal oxide semiconductor device (or alternatively a passive device), located and formed within and upon a surface semiconductor layer within the semiconductor structure.
    Type: Application
    Filed: February 11, 2009
    Publication date: August 12, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Joseph R. Greco, Kevin Munger, Richard A. Phelps, Jennifer C. Robbins, William Savaria, James A. Slinkman, Randy L. Wolf
  • Patent number: 7732303
    Abstract: A method of recycling monitor wafers. The method includes: (a) providing a semiconductor wafer which includes a dopant layer extending from a top surface of the wafer into the wafer a distance less than a thickness of the wafer, the dopant layer containing dopant species; after (a), (b) attaching an adhesive tape to a bottom surface of the wafer; after (b), (c) removing the dopant layer; and after (c), (d) removing the adhesive tape.
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: June 8, 2010
    Assignee: International Business Machines Corporation
    Inventors: Steven Ross Codding, Joseph R. Greco, Timothy Charles Krywanczyk
  • Patent number: 7700488
    Abstract: A wafer processing method. The method includes providing a semiconductor wafer. The semiconductor wafer includes (i) a semiconductor layer and (ii) a dopant layer on top of the semiconductor layer. The dopant layer comprises dopants. The method further includes removing the dopant layer from the semiconductor wafer. No chemical etching is performed on the dopant layer before said removing the dopant layer is performed.
    Type: Grant
    Filed: January 16, 2007
    Date of Patent: April 20, 2010
    Assignee: International Business Machines Corporation
    Inventors: Steven Ross Codding, Joseph R. Greco, Timothy Charles Krywanczyk
  • Publication number: 20090197400
    Abstract: A method of recycling monitor wafers. The method includes: (a) providing a semiconductor wafer which includes a dopant layer extending from a top surface of the wafer into the wafer a distance less than a thickness of the wafer, the dopant layer containing dopant species; after (a), (b) attaching an adhesive tape to a bottom surface of the wafer; after (b), (c) removing the dopant layer; and after (c), (d) removing the adhesive tape.
    Type: Application
    Filed: January 31, 2008
    Publication date: August 6, 2009
    Inventors: Steven Ross Codding, Joseph R. Greco, Timothy Charles Krywanczyk
  • Publication number: 20080171439
    Abstract: A wafer processing method. The method includes providing a semiconductor wafer. The semiconductor wafer includes (i) a semiconductor layer and (ii) a dopant layer on top of the semiconductor layer. The dopant layer comprises dopants. The method further includes removing the dopant layer from the semiconductor wafer. No chemical etching is performed on the dopant layer before said removing the dopant layer is performed.
    Type: Application
    Filed: January 16, 2007
    Publication date: July 17, 2008
    Inventors: Steven Ross Codding, Joseph R. Greco, Timothy Charles Krywanczyk
  • Patent number: 7247924
    Abstract: A method of modulating grain size in a polysilicon layer and devices fabricated with the method. The method comprises forming the layer of polysilicon on a substrate; and performing an ion implantation of a polysilicon grain size modulating species into the polysilicon layer such that an average resultant grain size of the implanted polysilicon layer after performing a pre-determined anneal is higher or lower than an average resultant grain size than would be obtained after performing the same pre-determined anneal on the polysilicon layer without a polysilicon grain size modulating species ion implant.
    Type: Grant
    Filed: October 28, 2003
    Date of Patent: July 24, 2007
    Assignee: International Business Machines Corporation
    Inventors: Peter J. Geiss, Joseph R. Greco, Richard S. Kontra, Emily Lanning
  • Patent number: 7008852
    Abstract: A process for forming at least one interface region between two regions of semiconductor material. At least one region of dielectric material comprising nitrogen is formed in the vicinity of at least a portion of a boundary between the two regions of semiconductor material, thereby controlling electrical resistance at the interface.
    Type: Grant
    Filed: December 2, 2004
    Date of Patent: March 7, 2006
    Assignee: International Business Machines Corporation
    Inventors: Arne W. Ballantine, Douglas D. Coolbaugh, Jeffrey Gilbert, Joseph R. Greco, Glenn R. Miller