Patents by Inventor Joseph S. Bair

Joseph S. Bair has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240143513
    Abstract: An apparatus and method for switching between different types of paging using separate control registers and without disabling paging. For example, one embodiment of a processor comprises: a first control register to store a first base address of a first paging structure associated with a first type of paging having a first number of paging structure levels; a second control register to store a second base address of a second paging structure associated with a first type of paging having a second number of paging structure levels greater than the first number of paging structure levels; page walk circuitry to select either the first base address from the first control register or the second base address from the second control register responsive to a first address translation request, the selection based on a characteristic of program code initiating the address translation request.
    Type: Application
    Filed: October 1, 2022
    Publication date: May 2, 2024
    Inventors: Gilbert NEIGER, Andreas KLEEN, David SHEFFIELD, Jason BRANDT, Ittai ANATI, Vedvyas SHANBHOGUE, Ido OUZIEL, Michael S. BAIR, Barry E. HUNTLEY, Joseph NUZMAN, Toby OPFERMAN, Michael A. ROTHMAN
  • Publication number: 20230279286
    Abstract: A variety of methods are disclosed, including, in one embodiment, a method of making crosslinked aromatic resin beads comprising: contacting a linker agent and a catalyst with an aromatic feedstock at a first temperature effective to react the linker agent with molecules in the aromatic feedstock to form a pre-polymer mixture; combining the pre-polymer mixture with an antisolvent; agitating the pre-polymer mixture and the antisolvent; and heating the pre-polymer mixture and antisolvent to a second temperature to react the pre-polymer mixture to form crosslinked aromatic resin beads, wherein the pre-polymer mixture is dispersed as droplets in the anti solvent.
    Type: Application
    Filed: February 24, 2023
    Publication date: September 7, 2023
    Applicant: ExxonMobil Technology and Engineering Company
    Inventors: Peter A. GORDON, Huaxing ZHOU, Joseph S. BAIR, Victor DEFLORIO, Mikel A. NITTOLI
  • Publication number: 20200199430
    Abstract: This disclosure relates to a heat transfer fluid having at least one first ester that is partially esterified, and at least one second ester that is fully esterified. The heat transfer fluid has a flash point from about 125° C. to about 225° C. as determined by ASTM D-93, and a kinematic viscosity (KV100) from about 1 to about 5 at 100° C. as determined by ASTM D-445. The at least one first ester and the at least one second ester are present in an amount such that, as the flash point and thermal conductivity of the heat transfer fluid are increased, the kinematic viscosity (KV100) of the heat transfer fluid is decreased or essentially maintained. This disclosure also relates to a method for increasing flash point and thermal conductivity, while decreasing or essentially maintaining viscosity, of a heat transfer fluid by using the heat transfer fluid.
    Type: Application
    Filed: December 18, 2019
    Publication date: June 25, 2020
    Inventors: Smruti A. Dance, Andrew E. Taggi, Joseph S. Bair, Zhisheng Gao
  • Publication number: 20200199482
    Abstract: This disclosure relates to a lubricating oil having a lubricating oil base stock as a major component, and one or more lubricating oil additives as a minor component. The lubricating oil base stock has at least one first ester that is partially esterified, and at least one second ester that is fully esterified. The lubricating oil has a flash point from about 125° C. to about 225° C. as determined by ASTM D-93, and a kinematic viscosity (KV100) from about 1 to about 5 at 100° C. as determined by ASTM D-445. The at least one first ester and the at least one second ester are present in an amount such that, as the flash point of the lubricating oil is increased, the kinematic viscosity (KV100) of the lubricating oil is decreased or maintained. This disclosure also relates to a method for increasing flash point, while decreasing or maintaining viscosity, of a lubricating oil in an engine or other mechanical component lubricated with the lubricating oil by using the lubricating oil.
    Type: Application
    Filed: December 18, 2019
    Publication date: June 25, 2020
    Inventors: Smruti A. Dance, Andrew E. Taggi, Joseph S. Bair, Zhisheng Gao
  • Patent number: 10576096
    Abstract: The therapies described herein can be selectively lethal toward a variety of different cancer cell types and cancer conditions in a subject. The combination therapies described herein can be useful for the management, treatment, control, or adjunct treatment of diseases, where the selective legality is beneficial in chemotherapeutic therapy, particularly where the disease is accompanied by elevated levels of NQO1.
    Type: Grant
    Filed: December 6, 2017
    Date of Patent: March 3, 2020
    Assignees: The Board of Regents of the University of Texas System, The Board of Trustees of the University of Illinois
    Inventors: Paul J. Hergenrother, David A. Boothman, Joseph S. Bair, Lifen Cao, Jinming Gao, Xiumei Huang, Xiuquan Luo, Xinpeng Ma, Zachary R. Moore, Elizabeth I. Parkinson
  • Patent number: 10285986
    Abstract: Compositions comprising Formula (I) can be selectively lethal toward a variety of different cancer cell types. The compositions are useful for the management, treatment, control, or adjunct treatment of diseases, where the selective lethality is beneficial in chemotherapeutic therapy.
    Type: Grant
    Filed: March 23, 2018
    Date of Patent: May 14, 2019
    Assignees: The Board of Trustees of the University of Illinois, The Board of Regents of the University of Texas System
    Inventors: Paul J. Hergenrother, David A. Boothman, Joseph S. Bair, Rahul Palchaudhuri, Elizabeth I. Parkinson
  • Patent number: 10272099
    Abstract: The therapies described herein can be selectively lethal toward a variety of different cancer cell types and cancer conditions in a subject. The combination therapies described herein can be useful for the management, treatment, control, or adjunct treatment of diseases, where the selective lethality is beneficial in chemotherapeutic therapy, particularly where the disease is accompanied by elevated levels of NQO1.
    Type: Grant
    Filed: April 8, 2014
    Date of Patent: April 30, 2019
    Assignees: The Board of Regents of the University of Texas System, The Board of Trustees of the University of Illinois.
    Inventors: Paul J. Hergenrother, David A. Boothman, Joseph S. Bair, Lifen Cao, Jinming Gao, Xiumei Huang, Xiuquan Luo, Xinpeng Ma, Zachary R. Moore, Elizabeth I. Parkinson
  • Publication number: 20180207150
    Abstract: Compositions comprising Formula (I) can be selectively lethal toward a variety of different cancer cell types. The compositions are useful for the management, treatment, control, or adjunct treatment of diseases, where the selective lethality is beneficial in chemotherapeutic therapy.
    Type: Application
    Filed: March 23, 2018
    Publication date: July 26, 2018
    Applicants: The Board of Trustees of the University of Illinois, The Board of Regents of the University of Texas System
    Inventors: Paul J. HERGENROTHER, David A. BOOTHMAN, Joseph S. BAIR, Rahul PALCHAUDHURI, Elizabeth I. PARKINSON
  • Publication number: 20180099002
    Abstract: The therapies described herein can be selectively lethal toward a variety of different cancer cell types and cancer conditions in a subject. The combination therapies described herein can be useful for the management, treatment, control, or adjunct treatment of diseases, where the selective legality is beneficial in chemotherapeutic therapy, particularly where the disease is accompanied by elevated levels of NQO1.
    Type: Application
    Filed: December 6, 2017
    Publication date: April 12, 2018
    Applicants: The Board of Regents of the University of Texas System, The Board of Trustees of the University of Illinois
    Inventors: Paul J. HERGENROTHER, David A. BOOTHMAN, Joseph S. BAIR, Lifen CAO, Jinming GAO, Xiumei HUANG, Xiuquan LUO, Xinpeng MA, Zachary R. MOORE, Elizabeth I. PARKINSON
  • Patent number: 9925180
    Abstract: Compositions comprising Formula (I) can be selectively lethal toward a variety of different cancer cell types. The compositions are useful for the management, treatment, control, or adjunct treatment of diseases, where the selective lethality is beneficial in chemotherapeutic therapy.
    Type: Grant
    Filed: March 9, 2017
    Date of Patent: March 27, 2018
    Assignees: The Board of Trustees of the University of Illinois, The Board of Regents of the University of Texas System
    Inventors: Paul J. Hergenrother, David A. Boothman, Joseph S. Bair, Rahul Palchaudhuri, Elizabeth I. Parkinson
  • Patent number: 9920069
    Abstract: Compounds that specifically kill fluoroquinolone (FQ) resistant bacteria have been developed and are described herein. The FQs are the most commonly prescribed antibiotics to adults in the U.S. and thus are extremely important drugs. However, bacterial resistant to these drugs is now ubiquitous in some of the most common and deadly Gram-positive pathogens, including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE). Indeed, FQs are no longer indicated for treatment of MRSA and VRE infections because of such resistance. The compounds have specific and potent activity versus MRSA and VRE.
    Type: Grant
    Filed: March 17, 2015
    Date of Patent: March 20, 2018
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Paul J. Hergenrother, Elizabeth I. Parkinson, Joseph S. Bair
  • Publication number: 20170182030
    Abstract: Compositions comprising Formula (I) can be selectively lethal toward a variety of different cancer cell types. The compositions are useful for the management, treatment, control, or adjunct treatment of diseases, where the selective lethality is beneficial in chemotherapeutic therapy.
    Type: Application
    Filed: March 9, 2017
    Publication date: June 29, 2017
    Applicants: The Board of Trustees of the University of Illinois, The Board of Regents of the University of Texas System
    Inventors: Paul J. HERGENROTHER, David A. Boothman, Joseph S. Bair, Rahul Palchaudhuri, Elizabeth I. Parkinson
  • Publication number: 20170096436
    Abstract: Compounds that specifically kill fluoroquinolone (FQ) resistant bacteria have been developed and are described herein. The FQs are the most commonly prescribed antibiotics to adults in the U.S. and thus are extremely important drugs. However, bacterial resistant to these drugs is now ubiquitous in some of the most common and deadly Gram-positive pathogens, including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE). Indeed, FQs are no longer indicated for treatment of MRSA and VRE infections because of such resistance. The compounds have specific and potent activity versus MRSA and VRE.
    Type: Application
    Filed: March 17, 2015
    Publication date: April 6, 2017
    Applicant: The Board of Trustees of the University of IIIinois
    Inventors: Paul J. HERGENROTHER, Elizabeth I. PARKINSON, Joseph S. BAIR
  • Patent number: 9611266
    Abstract: Compounds of Formula (I) can be selectively lethal toward a variety of different cancer cell types. The compounds are useful for the management, treatment, control, or adjunct treatment of diseases, where the selective lethality is beneficial in chemotherapeutic therapy.
    Type: Grant
    Filed: January 11, 2016
    Date of Patent: April 4, 2017
    Assignees: The Board of Trustees of the University of Illinois, The Board of Regents of the University of Texas System
    Inventors: Paul J. Hergenrother, David A. Boothman, Joseph S. Bair, Rahul Palchaudhuri, Elizabeth I. Parkinson
  • Publication number: 20160122348
    Abstract: Compounds of Formula (I) can be selectively lethal toward a variety of different cancer cell types. The compounds are useful for the management, treatment, control or adjunct treatment of diseases, where the selective lethality is beneficial in chemotherapeutic therapy.
    Type: Application
    Filed: January 11, 2016
    Publication date: May 5, 2016
    Applicants: The Board of Trustees of the University of Illinois, The Board of Regents of the University of Texas System
    Inventors: Paul J. Hergenrother, David A. Boothman, Joseph S. Bair, Rahul Palchaudhuri, Elizabeth I. Parkinson
  • Publication number: 20160030457
    Abstract: The therapies described herein can be selectively lethal toward a variety of different cancer cell types and cancer conditions in a subject. The combination therapies described herein can be useful for the management, treatment, control, or adjunct treatment of diseases, where the selective lethality is beneficial in chemotherapeutic therapy, particularly where the disease is accompanied by elevated levels of NQO1.
    Type: Application
    Filed: April 8, 2014
    Publication date: February 4, 2016
    Applicants: The Board of Regents of the University of Texas System, The Board of Trustees of University of Illinois
    Inventors: Paul J. HERGENROTHER, David A. BOOTHMAN, Joseph S. BAIR, Lifen CAO, Jinming GAO, Xiumei HUANG, Xiuquan LUO, Xinpeng MA, Zachary R. MOORE, Elizabeth I. PARKINSON
  • Patent number: 9233960
    Abstract: Compounds of Formula (I) can be selectively lethal toward a variety of different cancer cell types. The compounds are useful for the management, treatment, control, or adjunct treatment of diseases, where the selective lethality is beneficial in chemotherapeutic therapy.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: January 12, 2016
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Paul J. Hergenrother, David A. Boothman, Joseph S. Bair, Rahul Palchaudhuri, Elizabeth I. Parkinson
  • Publication number: 20150011509
    Abstract: Compounds of Formula (I) can be selectively lethal toward a variety of different cancer cell types. The compounds are useful for the management, treatment, control, or adjunct treatment of diseases, where the selective lethality is beneficial in chemotherapeutic therapy.
    Type: Application
    Filed: October 12, 2012
    Publication date: January 8, 2015
    Applicants: The Board of Trustees of the University of Illnois, The Board of Regents of the University of Texas System
    Inventors: Paul J. Hergenrother, David A. Boothman, Joseph S. Bair, Rahul Palchaudhuri, Elizabeth I. Parkinson