Patents by Inventor Joseph S. Warner

Joseph S. Warner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220410511
    Abstract: An optical assembly (200) including an encapsulated multilayer optical film (250). Methods of making and using such optical assemblies also are disclosed.
    Type: Application
    Filed: December 1, 2020
    Publication date: December 29, 2022
    Inventors: Gregg A. Ambur, Douglas S. Dunn, Henry A. Kostalik, IV, Christopher S. DeGraw, Thomas P. Klun, Benjamin R. Coonce, Richard J. Pokorny, Chunjie Zhang, Laurent Froissard, Joseph S. Warner
  • Publication number: 20210147677
    Abstract: A dual-molded silicone-polyamide composite article including a first molded piece that comprises a blend of polyamide and an ethylene-vinyl alcohol copolymer and a second molded piece that comprises a thermoset, hydrosilylation-cure silicone polymer. A portion of a surface of the second molded piece is autogenously bonded to a portion of a surface of the first molded piece.
    Type: Application
    Filed: April 16, 2019
    Publication date: May 20, 2021
    Inventors: Ramnath Subramaniam, Joseph S. Warner, Michael J. Svendsen, David M. Castiglione
  • Publication number: 20160207240
    Abstract: Injection Molded Nozzle Preform with Undercut Features Injection molded nozzle preforms (100) are disclosed. More specifically, an injection molded nozzle preform (100) with undercut features (120A, 120B,120C) is disclosed. The undercut features (120A, 120B,120C) extend from a major surface of a substrate (110), and have at least two non-parallel axis. An injection molded nozzle preform made from polypropylene is also disclosed.
    Type: Application
    Filed: August 29, 2014
    Publication date: July 21, 2016
    Inventors: Ramasubramani Kuduva Raman Thanumoorthy, Barry S. Carpenter, Paul A. Martinson, David H. Redinger, Joseph S. Warner
  • Patent number: 9289931
    Abstract: An ultrasonic-assisted injection molding system and method for making precisely-shaped articles. A source of ultrasonic energy is positioned to apply vibrational energy to a mold cavity connected to at least one gate in flow communication with a source of molten (co)polymer. The mold is heated to a temperature of 104-116° C., and the molten (co)polymer is injected into the mold cavity. After cooling the mold until the molten (co)polymer within the gate has solidified, ultrasonic energy is applied to the mold without remelting the solidified (co)polymer within the gate until the temperature increases to 116-122° C., thereby substantially relieving flow induced stresses. The mold is then cooled until the temperature decreases to 101-107° C., and is thereafter heated until the temperature increases to 116-122° C., thereby substantially relieving any thermally induced stresses. The mold is cooled until the molten (co)polymer has solidified, thereby forming a precision molded plastic optical element.
    Type: Grant
    Filed: March 14, 2012
    Date of Patent: March 22, 2016
    Assignee: 3M Innovative Properties Company
    Inventors: Stanley Rendon, Dennis E. Ferguson, Donald L. Pochardt, Joseph S. Warner, Timothy J. Rowell, Peter T. Benson, Satinder K. Nayar
  • Publication number: 20130345384
    Abstract: An ultrasonic-assisted injection molding system and method for making precisely-shaped articles. A source of ultrasonic energy is positioned to apply vibrational energy to a mold cavity connected to at least one gate in flow communication with a source of molten (co)polymer. The mold is heated to a temperature of 104-116° C., and the molten (co)polymer is injected into the mold cavity. After cooling the mold until the molten (co)polymer within the gate has solidified, ultrasonic energy is applied to the mold without remelting the solidified (co)polymer within the gate until the temperature increases to 116-122° C., thereby substantially relieving flow induced stresses. The mold is then cooled until the temperature decreases to 101-107° C., and is thereafter heated until the temperature increases to 116-122° C., thereby substantially relieving any thermally induced stresses. The mold is cooled until the molten (co)polymer has solidified, thereby forming a precision molded plastic optical element.
    Type: Application
    Filed: March 14, 2012
    Publication date: December 26, 2013
    Inventors: Stanley Rendon, Dennis E. Ferguson, Donald L. Pochardt, Joseph S. Warner, Timothy J. Rowell, Peter T. Benson, Satinder K. Nayar