Patents by Inventor Joseph Smart

Joseph Smart has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090283028
    Abstract: Semiconductor structures and devices based thereon include an aluminum nitride single-crystal substrate and at least one layer epitaxially grown thereover. The epitaxial layer may comprise at least one of AlN, GaN, InN, or any binary or tertiary alloy combination thereof, and have an average dislocation density within the semiconductor heterostructure is less than about 106 cm?2.
    Type: Application
    Filed: August 14, 2006
    Publication date: November 19, 2009
    Applicant: Crystal IS, Inc.
    Inventors: Leo J. Schowalter, Joseph A. Smart, Shiwen Liu, Kenneth E. Morgan, Robert T. Bondokov, Timothy J. Bettles, Glen A. Slack
  • Patent number: 7459356
    Abstract: The present invention relates to a high voltage and high power gallium nitride (GaN) transistor structure. In general, the GaN transistor structure includes a sub-buffer layer that serves to prevent injection of electrons into a substrate during high voltage operation, thereby improving performance of the GaN transistor structure during high voltage operation. Preferably, the sub-buffer layer is aluminum nitride, and the GaN transistor structure further includes a transitional layer, a GaN buffer layer, and an aluminum gallium nitride Schottky layer.
    Type: Grant
    Filed: February 23, 2006
    Date of Patent: December 2, 2008
    Assignee: RF Micro Devices, Inc.
    Inventors: Joseph Smart, Brook Hosse, Shawn Gibb, David Grider, Jeffrey Shealy
  • Publication number: 20080187016
    Abstract: Semiconductor structures are fabricated to include strained epitaxial layers exceeding a predicted critical thickness thereof.
    Type: Application
    Filed: January 25, 2008
    Publication date: August 7, 2008
    Inventors: Leo J. Schowalter, Joseph A. Smart, James R. Grandusky, Shiwen Liu
  • Patent number: 7408182
    Abstract: The present invention relates to passivation of a gallium nitride (GaN) structure before the GaN structure is removed from an epitaxial growth chamber. The GaN structure includes one or more structural epitaxial layers deposited on a substrate, and the passivation layer deposited on the structural epitaxial layers. In general, the passivation layer is a dielectric material deposited on the GaN structure that serves to passivate surface traps on the surface of the structural epitaxial layers. Preferably, the passivation layer is a dense, thermally deposited silicon nitride passivation layer.
    Type: Grant
    Filed: April 4, 2006
    Date of Patent: August 5, 2008
    Assignee: RF Micro Devices, Inc.
    Inventors: Joseph Smart, David Grider, Shawn Gibb, Brook Hosse, Jeffrey Shealy
  • Patent number: 7250360
    Abstract: A single step process for nucleation and subsequent epitaxial growth on a lattice mismatched substrate is achieved by pre-treating the substrate surface with at least one group III reactant or at least one group II reactant prior to the introduction of a group V reactant or a group VI reactant. The group III reactant or the group II reactant is introduced into a growth chamber at an elevated growth temperature to wet a substrate surface prior to any actual crystal growth. Once the pre-treatment of the surface is complete, a group V reactant or a group VI reactant is introduced to the growth chamber to commence the deposition of a nucleation layer. A buffer layer is then grown on the nucleation layer providing a surface upon which the epitaxial layer is grown preferably without changing the temperature within the chamber.
    Type: Grant
    Filed: March 2, 2005
    Date of Patent: July 31, 2007
    Assignee: Cornell Research Foundation, Inc.
    Inventors: James R. Shealy, Joseph A. Smart
  • Publication number: 20070101932
    Abstract: Bulk single crystals of AlN having a diameter greater than about 25 mm and dislocation densities of about 10,000 cm?2 or less and high-quality AlN substrates having surfaces of any desired crystallographic orientation fabricated from these bulk crystals.
    Type: Application
    Filed: May 9, 2006
    Publication date: May 10, 2007
    Applicant: Crystal IS, Inc.
    Inventors: Leo Schowalter, Glen Slack, J. Rojo, Robert Bondokov, Kenneth Morgan, Joseph Smart
  • Publication number: 20060199364
    Abstract: A single step process for nucleation and subsequent epitaxial growth on a lattice mismatched substrate is achieved by pre-treating the substrate surface with at least one group III reactant or at least one group II reactant prior to the introduction of a group V reactant or a group VI reactant. The group III reactant or the group II reactant is introduced into a growth chamber at an elevated growth temperature to wet a substrate surface prior to any actual crystal growth. Once the pre-treatment of the surface is complete, a group V reactant or a group VI reactant is introduced to the growth chamber to commence the deposition of a nucleation layer. A buffer layer is then grown on the nucleation layer providing a surface upon which the epitaxial layer is grown preferably without changing the temperature within the chamber.
    Type: Application
    Filed: March 2, 2005
    Publication date: September 7, 2006
    Inventors: James Shealy, Joseph Smart
  • Patent number: 7052942
    Abstract: The present invention relates to passivation of a gallium nitride (GaN) structure before the GaN structure is removed from an epitaxial growth chamber. The GaN structure includes one or more structural epitaxial layers deposited on a substrate, and the passivation layer deposited on the structural epitaxial layers. In general, the passivation layer is a dielectric material deposited on the GaN structure that serves to passivate surface traps on the surface of the structural epitaxial layers. Preferably, the passivation layer is a dense, thermally deposited silicon nitride passivation layer.
    Type: Grant
    Filed: October 20, 2003
    Date of Patent: May 30, 2006
    Assignee: RF Micro Devices, Inc.
    Inventors: Joseph Smart, David Grider, Shawn Gibb, Brook Hosse, Jeffrey Shealy
  • Patent number: 7033961
    Abstract: The present invention relates to an epitaxial structure having one or more structural epitaxial layers, including a gallium nitride (GaN) layer, which is deposited on a substrate, and a method of growing the epitaxial structure, wherein the structural epitaxial layers can be separated from the substrate. In general, a sacrificial epitaxial layer is deposited on the substrate between the substrate and the structural epitaxial layers, and the structural epitaxial layers are deposited on the sacrificial layer. After growth, the structural epitaxial layers are separated from the substrate by oxidizing the sacrificial layer. The structural epitaxial layers include a nucleation layer deposited on the sacrificial layer and a gallium nitride layer deposited on the nucleation layer. Optionally, the oxidation of the sacrificial layer may also oxidize the nucleation layer.
    Type: Grant
    Filed: July 15, 2003
    Date of Patent: April 25, 2006
    Assignee: RF Micro Devices, Inc.
    Inventors: Joseph Smart, Brook Hosse, Shawn Gibb, David Grider, Jeffrey B. Shealy
  • Patent number: 7026665
    Abstract: The present invention relates to a high voltage and high power gallium nitride (GaN) transistor structure. In general, the GaN transistor structure includes a sub-buffer layer that serves to prevent injection of electrons into a substrate during high voltage operation, thereby improving performance of the GaN transistor structure during high voltage operation. Preferably, the sub-buffer layer is aluminum nitride, and the GaN transistor structure further includes a transitional layer, a GaN buffer layer, and an aluminum gallium nitride Schottky layer.
    Type: Grant
    Filed: October 20, 2003
    Date of Patent: April 11, 2006
    Assignee: RF Micro Devices, Inc.
    Inventors: Joseph Smart, Brook Hosse, Shawn Gibb, David Grider, Jeffrey Shealy
  • Patent number: 6478871
    Abstract: An epitaxial deposition process produces epitaxial lateral overgrowth (ELO) of nitride based materials directly a patterned substrate (10). The substrate (10) is preferably formed from SiC or sapphire, and is patterned with a mask (12), preferably formed of silicon nitride, having a plurality of openings (13) formed therein. A nucleation layer (14), preferably formed of AlGaN, is grown at a high reactor temperature of 700-1100 degrees C., which wets the exposed substrate surface, without significant nucleation on the mask (12). This eliminates the need for regrowth while producing smooth growth surfaces in the window openings (13) as well as over the mask (12). Subsequent deposition of a nitride based material layer (16), preferably GaN, results in a relatively defect free planar surfaced material grown laterally over the mask (12).
    Type: Grant
    Filed: October 2, 2000
    Date of Patent: November 12, 2002
    Assignee: Cornell Research Foundation, Inc.
    Inventors: James R. Shealy, Joseph A. Smart