Patents by Inventor Joseph Stevick

Joseph Stevick has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140284503
    Abstract: Radiation shielding structures comprising bulk-solidifying amorphous alloys and methods of making radiation shielding structures and components in near-to-net shaped forms are provided.
    Type: Application
    Filed: September 29, 2011
    Publication date: September 25, 2014
    Applicant: Crucible Intellectual Property, LLC
    Inventors: Joseph Stevick, Theodore Andrew Waniuk, Tran Quoc Pham
  • Patent number: 8833432
    Abstract: Various embodiments provide methods and apparatus for forming bulk metallic glass (BMG) articles using a mold having a stationary mold part and a movable mold part paired to form a mold cavity. A molten material can be injected to fill the mold cavity. The molten material can then be cooled into a BMG article at a desired cooling rate. While injecting and/or cooling the molten material, the movement of the movable mold part can be controlled, such that a thermal contact between the molten material and the mold can be maintained. BMG articles can be formed without forming an underfilled part. Additional structural features can be imparted in the BMG article during formation. At least a portion of the formed BMG article can have an aspect ratio (first dimension/second dimension) of at least 10 or less than 0.1.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: September 16, 2014
    Assignee: Apple Inc.
    Inventors: Theodore A. Waniuk, Joseph Stevick, Sean O'Keeffe, Dermot J. Stratton, Joseph C. Poole, Matthew S. Scott, Christopher D. Prest
  • Publication number: 20140251568
    Abstract: Various embodiments provide apparatus and methods for melting and introducing alloy feedstock for molding by using a hollow branch having a constraint mechanism therein. In one embodiment, a hollow branch can extend upward from a cold chamber that is substantially horizontally configured. The hollow branch including a constraint mechanism can be capable of containing an alloy feedstock for melting into the molten alloy in the hollow branch and introducing the molten alloy to the cold chamber for molding.
    Type: Application
    Filed: May 22, 2014
    Publication date: September 11, 2014
    Applicants: Apple Inc., Crucible Intellectual Property, LLC
    Inventors: Theodore A. Waniuk, Joseph Stevick, Sean O'Keeffe, Dermot J. Stratton, Joseph C. Poole, Matthew S. Scott, Christopher D. Prest
  • Patent number: 8826968
    Abstract: Exemplary embodiments described herein relate to methods and systems for casting metal alloys into articles such as BMG articles. In one embodiment, processes involved for storing, pre-treating, alloying, melting, injecting, molding, etc. can be combined as desired and conducted in different chambers. During these processes, each chamber can be independently, separately controlled to have desired chamber environment, e.g., under vacuum, in an inert gas environment, or open to the surrounding environment. Due to the flexible, independent control of each chamber, the casting cycle time can be reduced and the production throughput can be increased. Contaminations of the molten materials and thus the final products are reduced or eliminated.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: September 9, 2014
    Assignee: Apple Inc.
    Inventors: Theodore A. Waniuk, Joseph Stevick, Sean O'Keeffe, Dermot J. Stratton, Joseph C. Poole, Matthew S. Scott, Christopher D. Prest
  • Patent number: 8820393
    Abstract: Embodiments herein relate to a method for forming a bulk solidifying amorphous alloy sheets have different surface finish including a “fire” polish surface like that of a float glass. In one embodiment, a first molten metal alloy is poured on a second molten metal of higher density in a float chamber to form a sheet of the first molten that floats on the second molten metal and cooled to form a bulk solidifying amorphous alloy sheet. In another embodiment, a molten metal is poured on a conveyor conveying the sheet of the first molten metal on a conveyor and cooled to form a bulk solidifying amorphous alloy sheet. The cooling rate such that a time-temperature profile during the cooling does not traverse through a region bounding a crystalline region of the metal alloy in a time-temperature-transformation (TTT) diagram.
    Type: Grant
    Filed: July 11, 2013
    Date of Patent: September 2, 2014
    Assignee: Apple Inc.
    Inventors: Christopher D Prest, Joseph C. Poole, Joseph Stevick, Theodore Andrew Waniuk, Quoc Tran Pham
  • Patent number: 8813814
    Abstract: Described herein is a method of melting a bulk metallic glass (BMG) feedstock, comprising: heating at least a portion of the BMG feedstock to temperatures slightly below a solidus temperature of the BMG, wherein the portion remains a solid at the temperatures slightly below the solidus temperature and wherein a temperature distribution of the portion is essentially uniform; heating the portion of the BMG feedstock to temperatures above a liquidus point.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: August 26, 2014
    Assignee: Apple Inc.
    Inventors: Theodore A. Waniuk, Joseph Stevick, Sean O'Keeffe, Dermot J. Stratton, Joseph C. Poole, Matthew S. Scott, Christopher D. Prest
  • Patent number: 8813817
    Abstract: Various embodiments provide systems and methods for casting amorphous alloys. Exemplary casting system may include an insertable and rotatable vessel configured in a non-movable induction heating structure for melting amorphous alloys to form molten materials in the vessel. While the molten materials remain heated, the vessel may be rotated to pour the molten materials into a casting device for casting them into articles.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: August 26, 2014
    Assignee: Apple Inc.
    Inventors: Theodore A. Waniuk, Joseph Stevick, Sean O'Keeffe, Dermot J. Stratton, Joseph C. Poole, Matthew S. Scott, Christopher D. Prest
  • Patent number: 8813816
    Abstract: Various embodiments provide apparatus and methods for melting and introducing alloy feedstock for molding by using a hollow branch having a constraint mechanism therein. In one embodiment, a hollow branch can extend upward from a cold chamber that is substantially horizontally configured. The hollow branch including a constraint mechanism can be capable of containing an alloy feedstock for melting into the molten alloy in the hollow branch and introducing the molten alloy to the cold chamber for molding.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: August 26, 2014
    Assignees: Apple Inc., Crucible Intellectual Property, LLC
    Inventors: Theodore A. Waniuk, Joseph Stevick, Sean O'Keeffe, Dermot J. Stratton, Joseph C. Poole, Matthew S. Scott, Christopher D. Prest
  • Patent number: 8813818
    Abstract: Various embodiments provide apparatus and methods for injection molding. In one embodiment, a constraining plunger may be configured in-line with an injection plunger to transfer a molten material from a melt zone and into a mold. The constraining and injection plungers are configured to constrain the molten material there-between while moving. The constrained molten material can be controlled to have an optimum surface area to volume ratio to provide minimized heat loss during the injection molding process. The system can be configured in a longitudinal direction (e.g., horizontally) for movement between the melt zone and mold along a longitudinal axis. A molded bulk amorphous object can be ejected from the mold.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: August 26, 2014
    Assignees: Apple Inc., Crucible Intellectual Property, LLC
    Inventors: Theodore A. Waniuk, Joseph Stevick, Sean O'Keeffe, Dermot J. Stratton, Joseph C. Poole, Matthew S. Scott, Christopher D. Prest
  • Patent number: 8813813
    Abstract: Described herein is a method of melting a bulk metallic glass (BMG) feedstock, comprising: feeding the BMG feedstock into a crucible; melting a first portion of the BMG feedstock to form molten BMG, while maintaining a second portion of the BMG feedstock solid; wherein the second portion and the crucible hold the molten BMG.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: August 26, 2014
    Assignee: Apple Inc.
    Inventors: Theodore A. Waniuk, Joseph Stevick, Sean O'Keeffe, Dermot J. Stratton, Joseph C. Poole, Matthew S. Scott, Christopher D. Prest
  • Publication number: 20140182804
    Abstract: The embodiments described herein relate to methods and apparatus for counter-gravity formation of BMG-containing hollow parts. In one embodiment, the BMG-containing hollow parts may be formed by first feeding a molten metal alloy in a counter-gravity direction into a mold cavity to deposit the molten metal alloy on a surface of the mold cavity and then solidifying the deposited molten metal alloy.
    Type: Application
    Filed: March 6, 2014
    Publication date: July 3, 2014
    Applicants: Crucible Intellectual Property, LLC, Apple Inc.
    Inventors: Theodore A. Waniuk, Joseph Stevick, Sean O'Keeffe, Dermot Stratton, Joseph Poole, Matthew Scott, Christopher Prest
  • Patent number: 8701742
    Abstract: The embodiments described herein relate to methods and apparatus for counter-gravity formation of BMG-containing hollow parts. In one embodiment, the BMG-containing hollow parts may be formed by first feeding a molten metal alloy in a counter-gravity direction into a mold cavity to deposit the molten metal alloy on a surface of the mold cavity and then solidifying the deposited molten metal alloy.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: April 22, 2014
    Assignees: Apple Inc., Crucible Intellectual Property, LLC
    Inventors: Theodore A. Waniuk, Joseph Stevick, Sean O'Keeffe, Dermot J. Stratton, Joseph C. Poole, Matthew S. Scott, Christopher D. Prest
  • Publication number: 20140102661
    Abstract: Various embodiments provide apparatus and methods for melting materials and for containing the molten materials within melt zone during melting. Exemplary apparatus may include a vessel configured to receive a material for melting therein; a load induction coil positioned adjacent to the vessel to melt the material therein; and a containment induction coil positioned in line with the load induction coil. The material in the vessel can be heated by operating the load induction coil at a first RF frequency to form a molten material. The containment induction coil can be operated at a second RF frequency to contain the molten material within the load induction coil. Once the desired temperature is achieved and maintained for the molten material, operation of the containment induction coil can be stopped and the molten material can be ejected from the vessel into a mold through an ejection path.
    Type: Application
    Filed: October 15, 2012
    Publication date: April 17, 2014
    Inventors: Theodore A. WANIUK, Joseph STEVICK, Sean O'KEEFFE, Dermot J. STRATTON, Joseph C. POOLE, Matthew S. SCOTT, Christopher D. PREST
  • Publication number: 20140090793
    Abstract: Various embodiments provide systems and methods for casting amorphous alloys. Exemplary casting system may include an insertable and rotatable vessel configured in a non-movable induction heating structure for melting amorphous alloys to form molten materials in the vessel. While the molten materials remain heated, the vessel may be rotated to pour the molten materials into a casting device for casting them into articles.
    Type: Application
    Filed: September 28, 2012
    Publication date: April 3, 2014
    Inventors: Theodore A. Waniuk, Joseph Stevick, Sean O'Keeffe, Dermot J. Stratton, Joseph C. Poole, Matthew S. Scott, Christopher D. Prest
  • Publication number: 20140090796
    Abstract: Described herein is a method of melting a bulk metallic glass (BMG) feedstock, comprising: feeding the BMG feedstock into a crucible; melting a first portion of the BMG feedstock to form molten BMG, while maintaining a second portion of the BMG feedstock solid; wherein the second portion and the crucible hold the molten BMG.
    Type: Application
    Filed: September 28, 2012
    Publication date: April 3, 2014
    Inventors: Theodore A. WANIUK, Joseph STEVICK, Sean O'KEEFFE, Dermot J. STRATTON, Joseph C. POOLE, Matthew S. SCOTT, Christopher D. PREST
  • Publication number: 20140090752
    Abstract: Exemplary embodiments described herein relate to methods and apparatus for forming a coating layer at least partially on surface of a BMG article formed of bulk solidifying amorphous alloys. In embodiments, the coating layer may be formed in situ during formation of a BMG article and/or post formation of a BMG article. The coating layer may provide the BMG article with surface hardness, wear resistance, surface activity, corrosion resistance, etc.
    Type: Application
    Filed: September 28, 2012
    Publication date: April 3, 2014
    Inventors: Theodore A. Waniuk, Dermot J. Stratton, Joseph C. Poole, Matthew S. Scott, Joseph Stevick, Christopher D. Prest, Sean O'Keefee
  • Publication number: 20140090798
    Abstract: Described herein is a method of melting a bulk metallic glass (BMG) feedstock, comprising: heating at least a portion of the BMG feedstock to temperatures slightly below a solidus temperature of the BMG, wherein the portion remains a solid at the temperatures slightly below the solidus temperature and wherein a temperature distribution of the portion is essentially uniform; heating the portion of the BMG feedstock to temperatures above a liquidus point.
    Type: Application
    Filed: September 28, 2012
    Publication date: April 3, 2014
    Inventors: THEODORE A. WANIUK, Joseph Stevick, Sean O'Keeffe, Dermot J. Stratton, Joseph C. Poole, Matthew S. Scott, Christopher D. Prest
  • Publication number: 20140090797
    Abstract: Described herein is a device comprising a crucible, a movable base and a heater; wherein the heater is configured to melt BMG to form molten BMG feedstock in the crucible; wherein the movable base configured to slide along a length of the crucible; wherein the movable base and the crucible are configured to hold the molten BMG feedstock.
    Type: Application
    Filed: September 28, 2012
    Publication date: April 3, 2014
    Inventors: Theodore A. Waniuk, Joseph Stevick, Sean O'Keeffe, Dermot J. Stratton, Joseph C. Poole, Matthew S. Scott, Christopher D. Prest
  • Publication number: 20140090799
    Abstract: Various embodiments provide apparatus and methods for injection molding. In one embodiment, a constraining plunger may be configured in-line with an injection plunger to transfer a molten material from a melt zone and into a mold. The constraining and injection plungers are configured to constrain the molten material there-between while moving. The constrained molten material can be controlled to have an optimum surface area to volume ratio to provide minimized heat loss during the injection molding process. The system can be configured in a longitudinal direction (e.g., horizontally) for movement between the melt zone and mold along a longitudinal axis. A molded bulk amorphous object can be ejected from the mold.
    Type: Application
    Filed: September 28, 2012
    Publication date: April 3, 2014
    Inventors: Theodore A. Waniuk, Joseph Stevick, Sean O' Keeffe, Dermot J. Stratton, Joseph C. Poole, Matthew S. Scott, Christopher D. Prest
  • Publication number: 20140087321
    Abstract: Various embodiments provide methods and apparatus for active cooling regulation of a melting process. In one embodiment, a meltable material can be melted in a vessel that includes cooling channel(s) configured therein. A contact temperature TContact of the vessel at an interface with the melt can be measured and compared with a skull forming temperature TSkull and a wetting temperature TWetting of the melt on the vessel. A cooling rate can be regulated to regulate TContact to be TSkull<TContact<TWetting. In another embodiment, TContact can be regulated in a value close or equal to a wetting threshold temperature TTh-I, wherein TTH-I=TWetting—a temperature safety margin for TWetting. In yet another embodiment, TContact can be regulated such that TTh-II?TContact?TTh-I, wherein TTh-II=TSkull plus a temperature safety margin for TSkull.
    Type: Application
    Filed: September 27, 2012
    Publication date: March 27, 2014
    Inventors: THEODORE A. WANIUK, Joseph Stevick, Sean O'Keeffe, Dermot J. Stratton, Joseph C. Poole, Matthew S. Scott, Christopher D. Prest