Patents by Inventor Joseph Succar

Joseph Succar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11748846
    Abstract: Systems, methods, and computer-readable media for feedback on and improving the accuracy of super-resolution imaging. In some embodiments, a low resolution image of a specimen can be obtained using a low resolution objective of a microscopy inspection system. A super-resolution image of at least a portion of the specimen can be generated from the low resolution image of the specimen using a super-resolution image simulation. Subsequently, an accuracy assessment of the super-resolution image can be identified based on one or more degrees of equivalence between the super-resolution image and one or more actually scanned high resolution images of at least a portion of one or more related specimens identified using a simulated image classifier. Based on the accuracy assessment of the super-resolution image, it can be determined whether to further process the super-resolution image. The super-resolution image can be further processed if it is determined to further process the super-resolution image.
    Type: Grant
    Filed: April 5, 2021
    Date of Patent: September 5, 2023
    Assignee: Nanotronics Imaging, Inc.
    Inventors: Matthew C. Putman, John B. Putman, Vadim Pinskiy, Joseph Succar
  • Publication number: 20210224966
    Abstract: Systems, methods, and computer-readable media for feedback on and improving the accuracy of super-resolution imaging. In some embodiments, a low resolution image of a specimen can be obtained using a low resolution objective of a microscopy inspection system. A super-resolution image of at least a portion of the specimen can be generated from the low resolution image of the specimen using a super-resolution image simulation. Subsequently, an accuracy assessment of the super-resolution image can be identified based on one or more degrees of equivalence between the super-resolution image and one or more actually scanned high resolution images of at least a portion of one or more related specimens identified using a simulated image classifier. Based on the accuracy assessment of the super-resolution image, it can be determined whether to further process the super-resolution image. The super-resolution image can be further processed if it is determined to further process the super-resolution image.
    Type: Application
    Filed: April 5, 2021
    Publication date: July 22, 2021
    Applicant: Nanotronics Imaging, Inc.
    Inventors: Matthew C. Putman, John B. Putman, Vadim Pinskiy, Joseph Succar
  • Patent number: 10970831
    Abstract: Systems, methods, and computer-readable media for feedback on and improving the accuracy of super-resolution imaging. In some embodiments, a low resolution image of a specimen can be obtained using a low resolution objective of a microscopy inspection system. A super-resolution image of at least a portion of the specimen can be generated from the low resolution image of the specimen using a super-resolution image simulation. Subsequently, an accuracy assessment of the super-resolution image can be identified based on one or more degrees of equivalence between the super-resolution image and one or more actually scanned high resolution images of at least a portion of one or more related specimens identified using a simulated image classifier. Based on the accuracy assessment of the super-resolution image, it can be determined whether to further process the super-resolution image. The super-resolution image can be further processed if it is determined to further process the super-resolution image.
    Type: Grant
    Filed: September 23, 2020
    Date of Patent: April 6, 2021
    Assignee: Nanotronics Imaging, Inc.
    Inventors: Matthew C. Putman, John B. Putman, Vadim Pinskiy, Joseph Succar
  • Publication number: 20210012473
    Abstract: Systems, methods, and computer-readable media for feedback on and improving the accuracy of super-resolution imaging. In some embodiments, a low resolution image of a specimen can be obtained using a low resolution objective of a microscopy inspection system. A super-resolution image of at least a portion of the specimen can be generated from the low resolution image of the specimen using a super-resolution image simulation. Subsequently, an accuracy assessment of the super-resolution image can be identified based on one or more degrees of equivalence between the super-resolution image and one or more actually scanned high resolution images of at least a portion of one or more related specimens identified using a simulated image classifier. Based on the accuracy assessment of the super-resolution image, it can be determined whether to further process the super-resolution image. The super-resolution image can be further processed if it is determined to further process the super-resolution image.
    Type: Application
    Filed: September 23, 2020
    Publication date: January 14, 2021
    Applicant: Nanotronics Imaging, Inc.
    Inventors: Matthew C. Putman, John B. Putman, Vadim Pinskiy, Joseph Succar
  • Patent number: 10789695
    Abstract: Systems, methods, and computer-readable media for feedback on and improving the accuracy of super-resolution imaging. In some embodiments, a low resolution image of a specimen can be obtained using a low resolution objective of a microscopy inspection system. A super-resolution image of at least a portion of the specimen can be generated from the low resolution image of the specimen using a super-resolution image simulation. Subsequently, an accuracy assessment of the super-resolution image can be identified based on one or more degrees of equivalence between the super-resolution image and one or more actually scanned high resolution images of at least a portion of one or more related specimens identified using a simulated image classifier. Based on the accuracy assessment of the super-resolution image, it can be determined whether to further process the super-resolution image. The super-resolution image can be further processed if it is determined to further process the super-resolution image.
    Type: Grant
    Filed: September 19, 2019
    Date of Patent: September 29, 2020
    Assignee: Nanotronics Imaging, Inc.
    Inventors: Matthew C. Putman, John B. Putman, Vadim Pinskiy, Joseph Succar
  • Publication number: 20200013155
    Abstract: Systems, methods, and computer-readable media for feedback on and improving the accuracy of super-resolution imaging. In some embodiments, a low resolution image of a specimen can be obtained using a low resolution objective of a microscopy inspection system. A super-resolution image of at least a portion of the specimen can be generated from the low resolution image of the specimen using a super-resolution image simulation. Subsequently, an accuracy assessment of the super-resolution image can be identified based on one or more degrees of equivalence between the super-resolution image and one or more actually scanned high resolution images of at least a portion of one or more related specimens identified using a simulated image classifier. Based on the accuracy assessment of the super-resolution image, it can be determined whether to further process the super-resolution image. The super-resolution image can be further processed if it is determined to further process the super-resolution image.
    Type: Application
    Filed: September 19, 2019
    Publication date: January 9, 2020
    Inventors: Matthew C. Putman, John B. Putman, Vadim Pinskiy, Joseph Succar
  • Patent number: 10467740
    Abstract: Systems, methods, and computer-readable media for feedback on and improving the accuracy of super-resolution imaging. In some embodiments, a low resolution image of a specimen can be obtained using a low resolution objective of a microscopy inspection system. A super-resolution image of at least a portion of the specimen can be generated from the low resolution image of the specimen using a super-resolution image simulation. Subsequently, an accuracy assessment of the super-resolution image can be identified based on one or more degrees of equivalence between the super-resolution image and one or more actually scanned high resolution images of at least a portion of one or more related specimens identified using a simulated image classifier. Based on the accuracy assessment of the super-resolution image, it can be determined whether to further process the super-resolution image. The super-resolution image can be further processed if it is determined to further process the super-resolution image.
    Type: Grant
    Filed: December 27, 2018
    Date of Patent: November 5, 2019
    Assignee: NANOTRONICS IMAGING, INC.
    Inventors: Matthew C. Putman, John B. Putman, Vadim Pinskiy, Joseph Succar