Patents by Inventor Joseph Szwarc

Joseph Szwarc has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8466772
    Abstract: On the track of a potentiometer a resistive path of thin film is deposited or a foil is bonded to a matched substrate and a parallel path is formed of discrete contact straps extending from the resistive path. The resistive path has a protecting coating and the wiper is moving on abrasion resistant contact straps. This design enables application of high precision and stability resistor technologies in the production of variable resistors destined for long service life. It enables also, in high precision applications, by maintaining the linearity of the output versus input function, a two-wire connection to the variable resistor used as a position sensor.
    Type: Grant
    Filed: February 17, 2009
    Date of Patent: June 18, 2013
    Assignee: Vishay Israel, Ltd
    Inventors: Joseph Szwarc, Jean-Michel Lanot, Ruta Zandman
  • Patent number: 8325005
    Abstract: A chip resistor having first and second opposite ends includes a rigid insulated substrate having a top surface and an opposite bottom surface, a first electrically conductive termination pad and a second electrically conductive termination pad, both termination pads on the top surface of the rigid insulated substrate, a layer of resistive material between the first and second electrically conductive termination pads, and a first and a second flexible lead, each made of an electrically conductive metal with a solder enhancing coating. The first flexible lead attached and electrically connected to the first electrically conductive termination pad and the second flexible lead attached and electrically connected to the second electrically conductive termination pad. Each of the flexible leads has a plurality of lead sections facilitating bending around the end of the chip resistor.
    Type: Grant
    Filed: June 20, 2011
    Date of Patent: December 4, 2012
    Assignee: Vishay International, Ltd.
    Inventors: Joseph Szwarc, Dany Mazliah, Makio Sato, Toru Okamoto
  • Publication number: 20120112874
    Abstract: On the track of a potentiometer a resistive path of thin film is deposited or a foil is bonded to a matched substrate and a parallel path is formed of discrete contact straps extending from the resistive path. The resistive path has a protecting coating and the wiper is moving on abrasion resistant contact straps. This design enables application of high precision and stability resistor technologies in the production of variable resistors destined for long service life. It enables also, in high precision applications, by maintaining the linearity of the output versus input function, a two-wire connection to the variable resistor used as a position sensor.
    Type: Application
    Filed: February 17, 2009
    Publication date: May 10, 2012
    Applicant: VISHAY ISRAEL LTD.
    Inventors: Joseph Szwarc, Jean-Michel Lanot, Felix Zandman
  • Publication number: 20110241819
    Abstract: A chip resistor having first and second opposite ends includes a rigid insulated substrate having a top surface and an opposite bottom surface, a first electrically conductive termination pad and a second electrically conductive termination pad, both termination pads on the top surface of the rigid insulated substrate, a layer of resistive material between the first and second electrically conductive termination pads, and a first and a second flexible lead, each made of an electrically conductive metal with a solder enhancing coating. The first flexible lead attached and electrically connected to the first electrically conductive termination pad and the second flexible lead attached and electrically connected to the second electrically conductive termination pad. Each of the flexible leads has a plurality of lead sections facilitating bending around the end of the chip resistor.
    Type: Application
    Filed: June 20, 2011
    Publication date: October 6, 2011
    Applicant: VISHAY INTERNATIONAL, LTD.
    Inventors: Joseph Szwarc, Dany Mazliah, Makio Sato, Toru Okamoto
  • Patent number: 7965169
    Abstract: A chip resistor having first and second opposite ends includes a rigid insulated substrate having a top surface and an opposite bottom surface, a first electrically conductive termination pad and a second electrically conductive termination pad, both termination pads on the top surface of the rigid insulated substrate, a layer of resistive material between the first and second electrically conductive termination pads, and a first and a second flexible lead, each made of an electrically conductive metal with a solder enhancing coating. The first flexible lead attached and electrically connected to the first electrically conductive termination pad and the second flexible lead attached and electrically connected to the second electrically conductive termination pad. Each of the flexible leads has a plurality of lead sections facilitating bending around the end of the chip resistor.
    Type: Grant
    Filed: February 22, 2008
    Date of Patent: June 21, 2011
    Inventors: Joseph Szwarc, Dany Mazliah, Makio Sato, Toru Okamoto
  • Publication number: 20090212900
    Abstract: A chip resistor having first and second opposite ends includes a rigid insulated substrate having a top surface and an opposite bottom surface, a first electrically conductive termination pad and a second electrically conductive termination pad, both termination pads on the top surface of the rigid insulated substrate, a layer of resistive material between the first and second electrically conductive termination pads, and a first and a second flexible lead, each made of an electrically conductive metal with a solder enhancing coating. The first flexible lead attached and electrically connected to the first electrically conductive termination pad and the second flexible lead attached and electrically connected to the second electrically conductive termination pad. Each of the flexible leads has a plurality of lead sections facilitating bending around the end of the chip resistor.
    Type: Application
    Filed: February 22, 2008
    Publication date: August 27, 2009
    Applicant: VISHAY INTERTECHNOLOGY, LTD.
    Inventors: JOSEPH SZWARC, DANY MAZLIAH, MAKIO SATO, TORU OKAMOTO
  • Patent number: 7278201
    Abstract: A high precision power resistor having the improved property of reduced resistance change due to power is disclosed. The resistor includes a substrate having first and second flat surfaces and having a shape and a composition; a resistive foil having a low TCR of about 0.1 to about 1 ppm/° C. and a thickness of about 0.03 mils to about 0.7 mils cemented to one of the flat surfaces with a cement, the resistive foil having a pattern to produce a desired resistance value, the substrate having a modulus of elasticity of about 10×106 psi to about 100×106 psi and a thickness of about 0.5 mils to about 200 mils, the resistive foil, pattern, type and thickness of cement, and substrate being selected to provide a cumulative effect of reduction of resistance change due to power. The present invention also provides for a method of producing a high precision power resistor.
    Type: Grant
    Filed: October 18, 2004
    Date of Patent: October 9, 2007
    Assignee: Vishay Intertechnology, Inc
    Inventors: Joseph Szwarc, Reuven Goldstein
  • Patent number: 7154370
    Abstract: A high precision power resistor having the improved property of reduced resistance change due to power is disclosed. The resistor includes a substrate having first and second flat surfaces and having a shape and a composition; a resistive foil having a low TCR of about 0.1 to about 1 ppm/° C. and a thickness of about 0.03 mils to about 0.7 mils cemented to one of the flat surfaces with a cement, the resistive foil having a pattern to produce a desired resistance value, the substrate having a modulus of elasticity of about 10×106 psi to about 100×106 psi and a thickness of about 0.5 mils to about 200 mils, the resistive foil, pattern, type and thickness of cement, and substrate being selected to provide a cumulative effect of reduction of resistance change due to power.
    Type: Grant
    Filed: January 22, 2004
    Date of Patent: December 26, 2006
    Assignee: Vishay Intertechnology, Inc.
    Inventors: Joseph Szwarc, Reuven Goldstein
  • Patent number: 6892443
    Abstract: A high precision power resistor having the improved property of reduced resistance change due to power is disclosed. The resistor includes a substrate having first and second flat surfaces and having a shape and a composition; a resistive foil having a low TCR of about 0.1 to about 1 ppm/° C. and a thickness of about 0.03 mils to about 0.7 mils cemented to one of the flat surfaces with a cement, the resistive foil having a pattern to produce a desired resistance value, the substrate having a modulus of elasticity of about 10×106 psi to about 100×106 psi and a thickness of about 0.5 mils to about 200 mils, the resistive foil, pattern, type and thickness of cement, and substrate being selected to provide a cumulative effect of reduction of resistance change due to power. The present invention also provides for a method of producing a high precision power resistor.
    Type: Grant
    Filed: November 25, 2002
    Date of Patent: May 17, 2005
    Assignee: Vishay Intertechnology
    Inventors: Joseph Szwarc, Reuven Goldstein
  • Publication number: 20050083170
    Abstract: A high precision power resistor having the improved property of reduced resistance change due to power is disclosed. The resistor includes a substrate having first and second flat surfaces and having a shape and a composition; a resistive foil having a low TCR of about 0.1 to about 1 ppm/° C. and a thickness of about 0.03 mils to about 0.7 mils cemented to one of the flat surfaces with a cement, the resistive foil having a pattern to produce a desired resistance value, the substrate having a modulus of elasticity of about 10×106 psi to about 100×106 psi and a thickness of about 0.5 mils to about 200 mils, the resistive foil, pattern, type and thickness of cement, and substrate being selected to provide a cumulative effect of reduction of resistance change due to power. The present invention also provides for a method of producing a high precision power resistor.
    Type: Application
    Filed: October 18, 2004
    Publication date: April 21, 2005
    Applicant: Vishay Intertechnology
    Inventors: Joseph Szwarc, Reuven Goldstein
  • Publication number: 20040150505
    Abstract: A high precision power resistor having the improved property of reduced resistance change due to power is disclosed. The resistor includes a substrate having first and second flat surfaces and having a shape and a composition; a resistive foil having a low TCR of about 0.1 to about 1 ppm/° C. and a thickness of about 0.03 mils to about 0.7 mils cemented to one of the flat surfaces with a cement, the resistive foil having a pattern to produce a desired resistance value, the substrate having a modulus of elasticity of about 10×106 psi to about 100×106 psi and a thickness of about 0.5 mils to about 200 mils, the resistive foil, pattern, type and thickness of cement, and substrate being selected to provide a cumulative effect of reduction of resistance change due to power.
    Type: Application
    Filed: January 22, 2004
    Publication date: August 5, 2004
    Applicant: Vishay Intertechnology
    Inventors: Joseph Szwarc, Reuven Goldstein
  • Publication number: 20040100356
    Abstract: A high precision power resistor having the improved property of reduced resistance change due to power is disclosed. The resistor includes a substrate having first and second flat surfaces and having a shape and a composition; a resistive foil having a low TCR of about 0.1 to about 1 ppm/° C. and a thickness of about 0.03 mils to about 0.7 mils cemented to one of the flat surfaces with a cement, the resistive foil having a pattern to produce a desired resistance value, the substrate having a modulus of elasticity of about 10×106 psi to about 100×106 psi and a thickness of about 0.5 mils to about 200 mils, the resistive foil, pattern, type and thickness of cement, and substrate being selected to provide a cumulative effect of reduction of resistance change due to power. The present invention also provides for a method of producing a high precision power resistor.
    Type: Application
    Filed: November 25, 2002
    Publication date: May 27, 2004
    Applicant: Vishay Intertechnology
    Inventors: Joseph Szwarc, Reuven Goldstein
  • Patent number: 6529115
    Abstract: A precision surface mounted foil resistor has a substrate having top and bottom planar surfaces. A resistance foil is secured to the bottom surface of the substrate and extends over the bottom. A bending protector plate of non-conductive material is superimposed over the resistance foil. A solder material is located at two areas of the foil to provide electrical contact with the PCB. The bending protector element is thicker than the solder contact areas and is provided between the solder material.
    Type: Grant
    Filed: March 16, 2001
    Date of Patent: March 4, 2003
    Assignee: Vishay Israel Ltd.
    Inventors: Joseph Szwarc, Ilya Aronson
  • Publication number: 20020130759
    Abstract: A precision surface mounted foil resistor has a substrate having top and bottom planar surfaces. A resistance foil is secured to the bottom surface of the substrate and extends over the bottom. A bending protector plate of non-conductive material is superimposed over the resistance foil. A solder material is located at two areas of the foil to provide electrical contact with the PCB. The bending protector element is thicker than the solder contact areas and is provided between the solder material.
    Type: Application
    Filed: March 16, 2001
    Publication date: September 19, 2002
    Inventors: Joseph Szwarc, Ilya Aronson
  • Patent number: 6181234
    Abstract: A monolithic resistor is provided with a central resistive metallic foil strip positioned between and attached to a pair of wings formed from an electrically conductive metallic foil. The wings include large surface areas to dissipate heat. A plurality of terminal pins are formed in the conductive strips for connection to an integrated circuit board, as well as a current source.
    Type: Grant
    Filed: December 29, 1999
    Date of Patent: January 30, 2001
    Assignee: Vishay Dale Electronics, Inc.
    Inventors: Joseph Szwarc, Joel J. Smejkal
  • Patent number: 5999085
    Abstract: An electrical resistor has a surface mounted four terminal current sensor of a very low resistance value and capable of handling short pulses of high power. It comprises a flat metal late, 1 to 50 mils thick, of an alloy of high electrical resistivity, to which are welded, on two opposite sides, two flat metal plates of very high electrical conductivity which serve as terminations for electrical interconnection. A slot is cut, from the outside edge toward the center, into each of the two termination plates which divides them into a wide pad for connection of current carrying wires and a narrow one for voltage sensing. The depth of the slots is optimized to get the best stability of resistance readings with changing ambient temperature and under influence of the self-heating effect.
    Type: Grant
    Filed: February 10, 1999
    Date of Patent: December 7, 1999
    Assignee: Vishay Dale Electronics, Inc.
    Inventors: Joseph Szwarc, Joel J. Smejkal
  • Patent number: 4677413
    Abstract: A precision resistor exhibiting a temperature coefficient of resistance which is very low and which is virtually independent of time, and capable of accepting high power, comprises a resistive foil applied to a substrate by means of an appropriate cement, wherein the coefficient of thermal expansion of the substrate is either at zero or as close to zero as is possible, and wherein the resistivity versus temperature characteristic of the foil selected is adjusted so as to compensate for the thermal strain induced change in resistance which results when the temperature of the assembly changes, and the device is reacting to the application of power virtually without creating a transient phenomenon due to the flow of heat. Also a method for producing such a precision resistor.
    Type: Grant
    Filed: November 20, 1984
    Date of Patent: June 30, 1987
    Assignee: Vishay Intertechnology, Inc.
    Inventors: Felix Zandman, Joseph Szwarc
  • Patent number: 4172249
    Abstract: Improved resistive electrical components are disclosed comprising an insulating or insulated substrate, a resistive foil bonded to the substrate having photoetched therein a pair of terminal pads for making electrical connections to the component and a system of resistive paths interconnecting the terminal pads, said system including an unadjustable section or sections and a plurality of adjustable sections, each having an adjustment tab associated therewith, said tab being removable to modify said section resistance and thereby altering the total resistance presented by the component between its terminal pads, the configurations of the sections differing from each other in a modified geometric progression so that the total resistance of said component is altered by a differing amount depending on which of the sections is modified by removal of its associated adjustment tab, whereby the total resistance of the component may be systematically varied in a sequence of successive steps to achieve a desired ultima
    Type: Grant
    Filed: July 11, 1977
    Date of Patent: October 23, 1979
    Assignee: Vishay Intertechnology, Inc.
    Inventor: Joseph Szwarc
  • Patent number: RE39660
    Abstract: An electrical resistor has a surface mounted four terminal current sensor of a very low resistance value and capable of handling short pulses of high power. It comprises a flat metal late, 1 to 50 mils thick, of an alloy of high electrical resistivity, to which are welded, on two opposite sides, two flat metal plates of very high electrical conductivity which serve as terminations for electrical interconnection. A slot is cut, from the outside edge toward the center, into each of the two termination plates which divides them into a wide pad for connection of current carrying wires and a narrow one for voltage sensing. The depth of the slots is optimized to get the best stability of resistance readings with changing ambient temperature and under influence of the self-heating effect.
    Type: Grant
    Filed: May 11, 2000
    Date of Patent: May 29, 2007
    Assignee: Vishay Dale Electronics, Inc.
    Inventors: Joseph Szwarc, Joel J. Smejkal