Patents by Inventor Joseph TYLKA

Joseph TYLKA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230367928
    Abstract: System and method optimize recyclability of an electronic device during manufacturing design A manufacturing design software produces engineering bill of materials, manufacturing bill of materials, and bill of process for the manufacturing design. Recycling process plan engine constructs a recycling process plan for the electronic device according to the manufacturing design. A virtual model of recycling processes is constructed by mapping needed skills to corresponding recycling equipment using a library of recycling equipment information. Recycling process plan engine uses the virtual model to simulate the recycling plan and optimizes each recycling process, and the overall sequence of recycling processes, according to an objective function. Evaluator module receives key performance indicator values from a virtual model simulation and calculates the value of the objective function based on key performance indicators.
    Type: Application
    Filed: August 31, 2021
    Publication date: November 16, 2023
    Applicant: Siemens Corporation
    Inventors: Joseph Tylka, Arquimedes Martinez Canedo, Sanjeev Srivastava, Kashish Goyal, Annemarie Breu
  • Patent number: 11032663
    Abstract: The system and method for virtual navigation of a sound field through interpolation of the signals from an array of microphone assemblies utilizes an array of two or more higher-order Ambisonics (HOA) microphone assemblies, which measure spherical harmonic coefficients (SHCs) of the sound field from spatially-distinct vantage points, to estimate the SHCs at an intermediate listening position. First, sound sources near to the microphone assemblies are detected and located. Simultaneously, the desired listening position is received. Only the microphone assemblies that are nearer to said desired listening position than to any near sources are considered valid for interpolation. The SHCs from these valid microphone assemblies are then interpolated using a combination of weighted averaging and linear translation filters. The result is an estimate of the SHCs that would have been captured by a HOA microphone assembly placed in the original sound field at the desired listening position.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: June 8, 2021
    Assignee: The Trustees of Princeton University
    Inventors: Edgar Y. Choueiri, Joseph Tylka
  • Publication number: 20200021940
    Abstract: The system and method for virtual navigation of a sound field through interpolation of the signals from an array of microphone assemblies utilizes an array of two or more higher-order Ambisonics (HOA) microphone assemblies, which measure spherical harmonic coefficients (SHCs) of the sound field from spatially-distinct vantage points, to estimate the SHCs at an intermediate listening position. First, sound sources near to the microphone assemblies are detected and located. Simultaneously, the desired listening position is received. Only the microphone assemblies that are nearer to said desired listening position than to any near sources are considered valid for interpolation. The SHCs from these valid microphone assemblies are then interpolated using a combination of weighted averaging and linear translation filters. The result is an estimate of the SHCs that would have been captured by a HOA microphone assembly placed in the original sound field at the desired listening position.
    Type: Application
    Filed: September 29, 2017
    Publication date: January 16, 2020
    Inventors: Edgar Y. CHOUEIRI, Joseph TYLKA
  • Patent number: 9959883
    Abstract: The method and system for measuring low-noise acoustical impulse responses at high sampling rates of the present invention utilizes two exponential sine sweeps (ESSs) to measure the impulse responses. The first ESS is a quick sweep up to the Nyquist frequency to provide an estimate of the system response and sample the ambient noise. This measurement is used to algorithmically determine an appropriate pass-band of the system. A second, slower sweep through the pass-band alone is then executed and a corresponding band-pass filter is applied to the resulting output signal to suppress noise. The result is a measured impulse response with an improved signal-to-noise ratio and a much-reduced pre-response.
    Type: Grant
    Filed: October 6, 2016
    Date of Patent: May 1, 2018
    Assignee: The Trustees of Princeton University
    Inventors: Edgar Y. Choueiri, Joseph Tylka, Rahulram Sridhar, Braxton Boren
  • Publication number: 20170098454
    Abstract: The method and system for measuring low-noise acoustical impulse responses at high sampling rates of the present invention utilizes two exponential sine sweeps (ESSs) to measure the impulse responses. The first ESS is a quick sweep up to the Nyquist frequency to provide an estimate of the system response and sample the ambient noise. This measurement is used to algorithmically determine an appropriate pass-band of the system. A second, slower sweep through the pass-band alone is then executed and a corresponding band-pass filter is applied to the resulting output signal to suppress noise. The result is a measured impulse response with an improved signal-to-noise ratio and a much-reduced pre-response.
    Type: Application
    Filed: October 6, 2016
    Publication date: April 6, 2017
    Inventors: Edgar Y. CHOUEIRI, Joseph TYLKA, Rahulram SRIDHAR, Braxton BOREN