Patents by Inventor Joseph V. Minervini

Joseph V. Minervini has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9615441
    Abstract: The invention specifies the use of feedback in the radio frequency (RF) drive for a synchrocyclotron, controlling the phase and/or amplitude of the accelerating field as a means to assure optimal acceleration of the beam, to increase the average beam current and to alter the beam orbit in order to allow appropriate extraction as the beam energy is varied. The effect of space charge is reduced by rapid acceleration and extraction of the beam, and the repetition rate of the pulses can be increased. Several means are presented to monitor the phase of the beam in synchrocyclotrons and to adjust the phase and amplitude of the RF to optimize the acceleration of the beam and to adjust the extraction and injection of the beam. Also, the use of a pulsed ion source that matches the acceptance window of the synchrocyclotron is described.
    Type: Grant
    Filed: May 23, 2016
    Date of Patent: April 4, 2017
    Assignee: Massachusetts Institute of Technology
    Inventors: Leslie Bromberg, Joseph V. Minervini, Alexey L. Radovinsky, Phillip C. Michael
  • Patent number: 9603235
    Abstract: The invention specifies the use of feedback in the radio frequency (RF) drive for a synchrocyclotron, controlling the phase and/or amplitude of the accelerating field as a means to assure optimal acceleration of the beam, to increase the average beam current and to alter the beam orbit in order to allow appropriate extraction as the beam energy is varied. The effect of space charge is reduced by rapid acceleration and extraction of the beam, and the repetition rate of the pulses can be increased. Several means are presented to monitor the phase of the beam in synchrocyclotrons and to adjust the phase and amplitude of the RF to optimize the acceleration of the beam and to adjust the extraction and injection of the beam. Also, the use of a pulsed ion source that matches the acceptance window of the synchrocyclotron is described.
    Type: Grant
    Filed: July 24, 2013
    Date of Patent: March 21, 2017
    Assignee: Massachusetts Institute of Technology
    Inventors: Leslie Bromberg, Joseph V. Minervini, Alexey L. Radovinsky, Philip C. Michael
  • Publication number: 20160270204
    Abstract: The invention specifies the use of feedback in the radio frequency (RF) drive for a synchrocyclotron, controlling the phase and/or amplitude of the accelerating field as a means to assure optimal acceleration of the beam, to increase the average beam current and to alter the beam orbit in order to allow appropriate extraction as the beam energy is varied. The effect of space charge is reduced by rapid acceleration and extraction of the beam, and the repetition rate of the pulses can be increased. Several means are presented to monitor the phase of the beam in synchrocyclotrons and to adjust the phase and amplitude of the RF to optimize the acceleration of the beam and to adjust the extraction and injection of the beam. Also, the use of a pulsed ion source that matches the acceptance window of the synchrocyclotron is described.
    Type: Application
    Filed: May 23, 2016
    Publication date: September 15, 2016
    Inventors: Leslie Bromberg, Joseph V. Minervini, Alexey L. Radovinsky, Phillip C. Michael
  • Patent number: 8975836
    Abstract: A cyclotron for ion acceleration is magnetically shielded during ion acceleration by passing electrical current in the same direction through both the first and second superconducting primary coils. A first magnetic-field-shielding coil is on the same side of the mid plane as the first superconducting primary coil, while a second magnetic-field-shielding coil is on the same side of the midplane as the second superconducting primary coil and beyond the outer radius of the second superconducting primary coil. Electrical current is also passed through the magnetic-field-shielding coils in a direction opposite to the direction in which electrical current is passed through the superconducting primary coils and generates a canceling magnetic field that reduces the magnetic field generated at radii from the central axis beyond the magnetic-field-shielding coils.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: March 10, 2015
    Assignee: Massachusetts Institute of Technology
    Inventors: Leslie Bromberg, Joseph V. Minervini, Peisi Le, Alexey L. Radovinsky, Phillip C. Michael, Timothy A. Antaya
  • Publication number: 20140087953
    Abstract: A cyclotron for ion acceleration is magnetically shielded during ion acceleration by passing electrical current in the same direction through both the first and second superconducting primary coils. A first magnetic-field-shielding coil is on the same side of the mid plane as the first superconducting primary coil, while a second magnetic-field-shielding coil is on the same side of the midplane as the second superconducting primary coil and beyond the outer radius of the second superconducting primary coil. Electrical current is also passed through the magnetic-field-shielding coils in a direction opposite to the direction in which electrical current is passed through the superconducting primary coils and generates a canceling magnetic field that reduces the magnetic field generated at radii from the central axis beyond the magnetic-field-shielding coils.
    Type: Application
    Filed: March 14, 2013
    Publication date: March 27, 2014
    Applicant: Massachusetts Institute of Technology
    Inventors: Leslie Bromberg, Joseph V. Minervini, Peisi Le, Alexey L. Radovinsky, Phillip C. Michael, Timothy A. Antaya
  • Publication number: 20140028220
    Abstract: The invention specifies the use of feedback in the radio frequency (RF) drive for a synchrocyclotron, controlling the phase and/or amplitude of the accelerating field as a means to assure optimal acceleration of the beam, to increase the average beam current and to alter the beam orbit in order to allow appropriate extraction as the beam energy is varied. The effect of space charge is reduced by rapid acceleration and extraction of the beam, and the repetition rate of the pulses can be increased. Several means are presented to monitor the phase of the beam in synchrocyclotrons and to adjust the phase and amplitude of the RF to optimize the acceleration of the beam and to adjust the extraction and injection of the beam. Also, the use of a pulsed ion source that matches the acceptance window of the synchrocyclotron is described.
    Type: Application
    Filed: July 24, 2013
    Publication date: January 30, 2014
    Inventors: Leslie Bromberg, Joseph V. Minervini, Peisi Le, Alexey L. Radovinsky, Phillip C. Michael, Timothy A. Antaya
  • Patent number: 8437819
    Abstract: Superconductor cable having a plurality of flat, tape-shaped ribbon superconductor wires assembled to form a stack having a rectangular cross section, the stack having a twist about a longitudinal axis of the stack. Multiple superconductor cables including twisted stacked-cables of the flat-tape-shaped superconductor wires, and power cable comprising the twisted flat-tape stacked cables are disclosed. Superconducting power cable disposed within and separated from an electrical insulator with a space passing cryo-coolant between the superconducting cable and insulator is also disclosed.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: May 7, 2013
    Assignee: Massachusetts Institute of Technology
    Inventors: Makoto Takayasu, Joseph V. Minervini, Leslie Bromberg
  • Publication number: 20100099570
    Abstract: Superconductor cable having a plurality of flat, tape-shaped ribbon superconductor wires assembled to form a stack having a rectangular cross section, the stack having a twist about a longitudinal axis of the stack. Multiple superconductor cables including twisted stacked-cables of the flat-tape-shaped superconductor wires, and power cable comprising the twisted flat-tape stacked cables are disclosed. Superconducting power cable disposed within and separated from an electrical insulator with a space passing cryo-coolant between the superconducting cable and insulator is also disclosed.
    Type: Application
    Filed: June 19, 2009
    Publication date: April 22, 2010
    Inventors: Makoto Takayasu, Joseph V. Minervini, Leslie Bromberg
  • Patent number: 7701677
    Abstract: A coil system for inductively heating a superconducting magnet in order to provide an internal energy dump by uniformly quenching a high performance superconducting magnet. The quench-inducing system uses AC magnetic fields that require negligible reactive power. The system is especially suited for inducing a relatively uniform quench in dry superconducting magnets.
    Type: Grant
    Filed: September 7, 2006
    Date of Patent: April 20, 2010
    Assignees: Massachusetts Institute of Technology, Still River Systems, Inc.
    Inventors: Joel Henry Schultz, Leonard Myatt, Leslie Bromberg, Joseph V. Minervini, Timothy Antaya
  • Publication number: 20080062588
    Abstract: A coil system for inductively heating a superconducting magnet in order to provide an internal energy dump by uniformly quenching a high performance superconducting magnet. The quench-inducing system uses AC magnetic fields that require negligible reactive power. The system is especially suited for inducing a relatively uniform quench in dry superconducting magnets.
    Type: Application
    Filed: September 7, 2006
    Publication date: March 13, 2008
    Inventors: Joel Henry Schultz, Leonard Myatt, Leslie Bromberg, Joseph V. Minervini, Timothy Antaya