Patents by Inventor Joseph V Nguyen

Joseph V Nguyen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9040446
    Abstract: A method for preparing an improved slurry catalyst for the upgrade of heavy oil feedstock is provided. In one embodiment, the process comprises: sulfiding at least a metal precursor solution with at least a sulfiding agent forming a sulfided Group VIB catalyst precursor, the metal precursor solution having a pH of at least 4 and a concentration of less than 10 wt. % of Primary metal in solution; and mixing the catalyst precursor with a hydrocarbon diluent to form the slurry catalyst composition. The slurry catalyst prepared therefrom has a BET total surface area of at least 100 m2/g, a total pore volume of at least 0.5 cc/g and a polymodal pore distribution with at least 80% of pore sizes in the range of 5 to 2,000 Angstroms in diameter.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: May 26, 2015
    Assignee: Chevron U.S.A. Inc.
    Inventors: Joseph V. Nguyen, Julie Chabot, Ling Jiao, Christopher Paul Dunckley, Shuwu Yang, Erin P. Maris, Oleg Mironov, Bruce Edward Reynolds, Alexander E. Kuperman
  • Patent number: 8809223
    Abstract: A process for preparing an improved slurry catalyst for the upgrade of heavy oil feedstock is provided. The process comprises providing at least a metal precursor in solution comprising at least two different metal cations in its molecular structure, with at least one of the metal cations is a Group VIB metal cation; sulfiding the metal precursor with a sulfiding agent in solution forming a catalyst precursor; and mixing the catalyst precursor with a hydrocarbon diluent to form the slurry catalyst. In one embodiment, the at least a metal precursor comprising at least two different metal cations is prepared by combining and reacting at least one Group VIB metal compound with at least a Promoter metal compound selected from Group VIII, Group IIB, Group IIA, Group IVA metals and combinations thereof.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: August 19, 2014
    Assignee: Chevron U.S.A. Inc.
    Inventors: Joseph V. Nguyen, Julie Chabot, Oleg Mironov
  • Patent number: 8809222
    Abstract: An improved process for preparing a slurry catalyst for the upgrade of heavy oil feedstock is provided. In the process, high shear mixing is employed to generate an emulsion containing droplets of metal precursor in oil with droplet sizes ranging from 0.1 to 300 ?m. The emulsion is subsequently sulfided with a sulfiding agent, or in-situ in a heavy oil feedstock to form a slurry catalyst. The in-situ sulfidation in heavy oil is under sufficient condition for the heavy oil feedstock to generate the sulfiding source needed for the sulfidation.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: August 19, 2014
    Assignee: Chevron U.S.A. Inc.
    Inventors: Oleg Mironov, Alexander E. Kuperman, Julie Chabot, Shuwu Yang, Joseph V. Nguyen, Ling Jiao, Bruce Edward Reynolds, Axel Brait, Kenneth Kwik, Modinat Kotun
  • Patent number: 8802586
    Abstract: An improved hydroprocessing slurry catalyst is provided for the upgrade of heavy oil feedstock. The catalyst comprises dispersed particles in a hydrocarbon medium with the dispersed particles have an average particle size ranging from 1 to 300 ?m. The catalyst has a total pore volume of at least 0.5 cc/g and a polymodal pore distribution with at least 80% of pore sizes in the range of 5 to 2,000 Angstroms in diameter. The catalyst is prepared from sulfiding and dispersing a metal precursor solution in a hydrocarbon diluent, the metal precursor comprising at least a Primary metal precursor and optionally a Promoter metal precursor, the metal precursor solution having a pH of at least 4 and a concentration of less than 10 wt. % of Primary metal in solution.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: August 12, 2014
    Assignee: Chevron U.S.A. Inc.
    Inventors: Ling Jiao, Julie Chabot, Joseph V. Nguyen, Christopher Paul Dunckley, Shuwu Yang, Erin P. Maris, Oleg Mironov, Bruce Edward Reynolds, Alexander E. Kuperman
  • Patent number: 8802587
    Abstract: An improved process to make a slurry catalyst for the upgrade of heavy oil feedstock is provided. The sulfiding of the metal precursor/catalyst precursor is carried out at least twice (“enhanced sulfiding”) in the improved process to form a slurry catalyst with improved surface area and porosity value. The slurry catalyst under an enhanced sulfiding scheme is characterized as having increased catalytic activities over a slurry catalyst without an enhanced sulfidation step.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: August 12, 2014
    Assignee: Chevron U.S.A. Inc.
    Inventors: Joseph V. Nguyen, Julie Chabot, Ling Jiao, Christopher Paul Dunckley, Shuwu Yang
  • Patent number: 8778828
    Abstract: A process for preparing a slurry catalyst for the upgrade of heavy oil feedstock is provided. The process employs a pressure leach solution obtained from a metal recovery process as part of the metal precursor feed. In one embodiment, the process comprises: sulfiding a pressure leach solution having at least a Group VIB metal precursor compound in solution forming a catalyst precursor, and mixing the sulfided catalyst precursor with a hydrocarbon diluent to form the slurry catalyst. In another embodiment, the pressure leach solution is mixed with a hydrocarbon diluent under high shear mixing conditions to form an emulsion, which emulsion can be sulfided in-situ upon contact with a heavy oil feedstock in the heavy oil upgrade process.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: July 15, 2014
    Assignee: Chevron U.S.A. Inc.
    Inventors: Oleg Mironov, Alexander E. Kuperman, Rahul Shankar Bhaduri, Julie Chabot, Shuwu Yang, Ling Jiao, Joseph V. Nguyen, Bruce Edward Reynolds
  • Patent number: 8703637
    Abstract: An improved process to make a slurry catalyst for the upgrade of heavy oil feedstock is provided. In the process, at least a metal precursor feedstock is portioned and fed in any of the stages: the promotion stage; the sulfidation stage; or the transformation stage of a water-based catalyst precursor to a slurry catalyst. In one embodiment, the promoter metal precursor feedstock is split into portions, the first portion is for the sulfiding step, the second portion is for the promotion step; and optionally the third portion is to be added to the transformation step in the mixing of the sulfided promoted catalyst precursor with a hydrocarbon diluent to form the slurry catalyst. In another embodiment, the Primary metal precursor feedstock is split into portions.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: April 22, 2014
    Assignee: Chevron U.S.A. Inc.
    Inventors: Shuwu Yang, Julie Chabot, Ling Jiao, Joseph V. Nguyen, Bruce Edward Reynolds
  • Patent number: 8697594
    Abstract: A single metal slurry catalyst for the upgrade of heavy oil feedstock is provided. The slurry catalyst is prepared by sulfiding a Primary metal precursor, then mixing the sulfided metal precursor with a hydrocarbon diluent to form the slurry catalyst. The single-metal slurry catalyst has the formula (Mt)a(Sv)d(Cw)e(Hx)f(Oy)g(Nz)h, wherein M is at least one of a non-noble Group VIII metal, a Group VIB metal, a Group IVB metal, and a Group IIB metal; 0.5a<=d<=4a; 0<=e<=11a; 0<=f<=18a; 0<=g<=2a; 0<=h<=3a; t, v, w, x, y, z, each representing total charge for each of: M, S, C, H, O, and N; and ta+vd+we+xf+yg+zh=0. The slurry catalyst has a particle size ranging from 1 to 300 ?m.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: April 15, 2014
    Assignee: Chevron U.S.A. Inc.
    Inventors: Joseph V. Nguyen, Axel Brait, Oleg Mironov, Alexander E. Kuperman
  • Patent number: 8236169
    Abstract: A process for hydroprocessing heavy oil feedstock is disclosed. The process operates in once-through mode, employing a plurality of contacting zones and at least a separation zone to convert at least a portion of the heavy oil feedstock to lower boiling hydrocarbons, forming upgraded products. The contacting zones operate under hydrocracking conditions, employing a slurry catalyst for upgrading the heavy oil feedstock. At least an additive material selected from inhibitor additives, anti-foam agents, stabilizers, metal scavengers, metal contaminant removers, metal passivators, and sacrificial materials, in an amount of less than 1 wt. % of the heavy oil feedstock, is added to at least one of the contacting zones. In one embodiment, the additive material is an anti-foam agent. In another embodiment, the additive material is a sacrificial material for trapping heavy metals in the heavy oil feed and/or deposited coke, thus prolonging the life of the slurry catalyst.
    Type: Grant
    Filed: July 21, 2009
    Date of Patent: August 7, 2012
    Assignee: Chevron U.S.A. Inc
    Inventors: Joseph V Nguyen, Axel Brait, Julie Chabot, Bo Kou, Erin Maris, Rahul S. Bhaduri, Alexander E. Kuperman
  • Publication number: 20120172207
    Abstract: An improved process to make a slurry catalyst for the upgrade of heavy oil feedstock is provided. The sulfiding of the metal precursor/catalyst precursor is carried out at least twice (“enhanced sulfiding”) in the improved process to form a slurry catalyst with improved surface area and porosity value. The slurry catalyst under an enhanced sulfiding scheme is characterized as having increased catalytic activities over a slurry catalyst without an enhanced sulfidation step.
    Type: Application
    Filed: December 20, 2011
    Publication date: July 5, 2012
    Inventors: Joseph V. NGUYEN, Ling JIAO, Julie CHABOT, Christopher Paul DUNCKLEY, Shuwu YANG
  • Publication number: 20120172203
    Abstract: An improved process for preparing a slurry catalyst for the upgrade of heavy oil feedstock is provided. In the process, high shear mixing is employed to generate an emulsion containing droplets of metal precursor in oil with droplet sizes ranging from 0.1 to 300 ?m. The emulsion is subsequently sulfided with a sulfiding agent, or in-situ in a heavy oil feedstock to form a slurry catalyst. The in-situ sulfidation in heavy oil is under sufficient condition for the heavy oil feedstock to generate the sulfiding source needed for the sulfidation.
    Type: Application
    Filed: December 20, 2011
    Publication date: July 5, 2012
    Inventors: Oleg Mironov, Alexander E. Kuperman, Juli Chabot, Shuwu Yang, Joseph V. Nguyen, Ling Jiao, Bruce Edward Reynolds, Axel Brait, Kenneth Kwik, Modinat Kotun
  • Publication number: 20120172199
    Abstract: An improved process to make a slurry catalyst for the upgrade of heavy oil feedstock is provided. In the process, at least a metal precursor feedstock is portioned and fed in any of the stages: the promotion stage; the sulfidation stage; or the transformation stage of a water-based catalyst precursor to a slurry catalyst. In one embodiment, the promoter metal precursor feedstock is split into portions, the first portion is for the sulfiding step, the second portion is for the promotion step; and optionally the third portion is to be added to the transformation step in the mixing of the sulfided promoted catalyst precursor with a hydrocarbon diluent to form the slurry catalyst. In another embodiment, the Primary metal precursor feedstock is split into portions.
    Type: Application
    Filed: December 20, 2011
    Publication date: July 5, 2012
    Inventors: Shuwu Yang, Julie Chabot, Ling Jiao, Joseph V. Nguyen, Bruce Edward Reynolds
  • Publication number: 20120172205
    Abstract: An improved hydroprocessing slurry catalyst is provided for the upgrade of heavy oil feedstock. The slurry catalyst is prepared from at least a Group VIB metal precursor compound and optionally at least a Promoter metal precursor compound. The catalyst comprises dispersed particles in a hydrocarbon medium with the dispersed particles have an average particle size ranging from 1 to 300 ?m. The catalyst has a total surface area of at least 100 m2/g. The catalyst is prepared from sulfiding and dispersing a metal precursor solution in a hydrocarbon diluent, the metal precursor comprising at least a Primary metal precursor and optionally a Promoter metal precursor, the metal precursor solution having a pH of at least 4 and a concentration of less than 10 wt. % of Primary metal in solution.
    Type: Application
    Filed: December 20, 2011
    Publication date: July 5, 2012
    Applicant: Chevron Corporation
    Inventors: Julie Chabot, Ling Jiao, Joseph V. Nguyen, Christopher Paul Dunckley, Shuwu Yang, Erin P. Maris, Oleg Mironov, Bruce Edward Reynolds, Alexander E. Kuperman
  • Publication number: 20120172200
    Abstract: A single metal slurry catalyst for the upgrade of heavy oil feedstock is provided. The slurry catalyst is prepared by sulfiding a Primary metal precursor, then mixing the sulfided metal precursor with a hydrocarbon diluent to form the slurry catalyst. The single-metal slurry catalyst has the formula (Mt)a(Sv)d(Cw)e(Hx)f(Oy)g(Nz)h, wherein M is at least one of a non-noble Group VIII metal, a Group VIB metal, a Group IVB metal, and a Group IIB metal; 0.5a<=d<=4a; 0<=e<=11a; 0<=f<=18a; 0<=g<=2a; 0<=h<=3a; t, v, w, x, y, z, each representing total charge for each of: M, S, C, H, O, and N; and ta+vd+we+xf+yg+zh=0. The slurry catalyst has a particle size ranging from 1 to 300 ?m.
    Type: Application
    Filed: December 20, 2011
    Publication date: July 5, 2012
    Inventors: Joseph V. Nguyen, Axel Brait, Oleg Mironov, Alexander E. Kuperman
  • Publication number: 20120172204
    Abstract: An improved hydroprocessing slurry catalyst is provided for the upgrade of heavy oil feedstock. The catalyst comprises dispersed particles in a hydrocarbon medium with the dispersed particles have an average particle size ranging from 1 to 300 ?m. The catalyst has a total pore volume of at least 0.5 cc/g and a polymodal pore distribution with at least 80% of pore sizes in the range of 5 to 2,000 Angstroms in diameter. The catalyst is prepared from sulfiding and dispersing a metal precursor solution in a hydrocarbon diluent, the metal precursor comprising at least a Primary metal precursor and optionally a Promoter metal precursor, the metal precursor solution having a pH of at least 4 and a concentration of less than 10 wt. % of Primary metal in solution.
    Type: Application
    Filed: December 20, 2011
    Publication date: July 5, 2012
    Inventors: Ling Jiao, Julie Chabot, Joseph V. Nguyen, Christopher Paul Dunckley, Shuwu Yang, Erin P. Maris, Oleg Mironov, Bruce Edward Reynolds, Alexander E. Kuperman
  • Publication number: 20120172206
    Abstract: A method for preparing an improved slurry catalyst for the upgrade of heavy oil feedstock is provided. In one embodiment, the process comprises: sulfiding at least a metal precursor solution with at least a sulfiding agent forming a sulfided Group VIB catalyst precursor, the metal precursor solution having a pH of at least 4 and a concentration of less than 10 wt. % of Primary metal in solution; and mixing the catalyst precursor with a hydrocarbon diluent to form the slurry catalyst composition. The slurry catalyst prepared therefrom has a BET total surface area of at least 100 m2/g, a total pore volume of at least 0.5 cc/g and a polymodal pore distribution with at least 80% of pore sizes in the range of 5 to 2,000 Angstroms in diameter.
    Type: Application
    Filed: December 20, 2011
    Publication date: July 5, 2012
    Inventors: Joseph V. Nguyen, Julie Chabot, Ling Jiao, Christopher Paul Dunckley, Shuwu Yang, Erin P. Maris, Oleg Mironov, Bruce Edward Reynolds, Alexander E. Kuperman
  • Publication number: 20120172197
    Abstract: A process for preparing an improved slurry catalyst for the upgrade of heavy oil feedstock is provided. The process comprises providing at least a metal precursor in solution comprising at least two different metal cations in its molecular structure, with at least one of the metal cations is a Group VIB metal cation; sulfiding the metal precursor with a sulfiding agent in solution forming a catalyst precursor; and mixing the catalyst precursor with a hydrocarbon diluent to form the slurry catalyst. In one embodiment, the at least a metal precursor comprising at least two different metal cations is prepared by combining and reacting at least one Group VIB metal compound with at least a Promoter metal compound selected from Group VIII, Group IIB, Group IIA, Group IVA metals and combinations thereof.
    Type: Application
    Filed: December 20, 2011
    Publication date: July 5, 2012
    Inventors: Joseph V. Nguyen, Julie Chabot, Oleg Mironov
  • Publication number: 20120172202
    Abstract: A process for preparing a slurry catalyst for the upgrade of heavy oil feedstock is provided. The process employs a pressure leach solution obtained from a metal recovery process as part of the metal precursor feed. In one embodiment, the process comprises: sulfiding a pressure leach solution having at least a Group VIB metal precursor compound in solution forming a catalyst precursor, and mixing the sulfided catalyst precursor with a hydrocarbon diluent to form the slurry catalyst. In another embodiment, the pressure leach solution is mixed with a hydrocarbon diluent under high shear mixing conditions to form an emulsion, which emulsion can be sulfided in-situ upon contact with a heavy oil feedstock in the heavy oil upgrade process.
    Type: Application
    Filed: December 20, 2011
    Publication date: July 5, 2012
    Applicant: Chevron Corporation
    Inventors: Oleg Mironov, Alexander E. Kuperman, Rahul Shankar Bhaduri, Julie Chabot, Shuwu Yang, Joseph V. Nguyen, Ling Jiao, Bruce Edward Reynolds
  • Publication number: 20110017636
    Abstract: A process for hydroprocessing heavy oil feedstock is disclosed. The process operates in once-through mode, employing a plurality of contacting zones and at least a separation zone to convert at least a portion of the heavy oil feedstock to lower boiling hydrocarbons, forming upgraded products. The contacting zones operate under hydrocracking conditions, employing a slurry catalyst for upgrading the heavy oil feedstock. At least an additive material selected from inhibitor additives, anti-foam agents, stabilizers, metal scavengers, metal contaminant removers, metal passivators, and sacrificial materials, in an amount of less than 1 wt. % of the heavy oil feedstock, is added to at least one of the contacting zones. In one embodiment, the additive material is an anti-foam agent. In another embodiment, the additive material is a sacrificial material for trapping heavy metals in the heavy oil feed and/or deposited coke, thus prolonging the life of the slurry catalyst.
    Type: Application
    Filed: July 21, 2009
    Publication date: January 27, 2011
    Inventors: Joseph V. Nguyen, Bo Kou, Julie Chabot, Erin Maris, Axel Brait, Rahul S. Bhaduri, Alexander E. Kuperman