Patents by Inventor Joseph VAN NAUSDLE

Joseph VAN NAUSDLE has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220196937
    Abstract: Embodiments described herein may be related to apparatuses, processes, and techniques related to hydrophobic features to block or slow the spread of epoxy. These hydrophobic features are placed either on a die surface or on a substrate surface to control epoxy spread between the die in the substrate to prevent formation of fillets. Packages with these hydrophobic features may include a substrate, a die with a first side and a second side opposite the first side, the second side of the die physically coupled with a surface of the substrate, and a hydrophobic feature coupled with the second side of the die or the surface of the substrate to reduce a flow of epoxy on the substrate or die. In embodiments, these hydrophobic features may include a chemical barrier or a laser ablated area on the substrate or die. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: December 23, 2020
    Publication date: June 23, 2022
    Inventors: Bassam ZIADEH, Jingyi HUANG, Yiqun BAI, Ziyin LIN, Vipul MEHTA, Joseph VAN NAUSDLE
  • Publication number: 20220102231
    Abstract: Techniques and mechanisms for facilitating heat conductivity in a packaged device with a dummy die. In an embodiment, a packaged device comprises a substrate and one or more IC die coupled thereto. A dummy die structure extends to a bottom of a recess structure formed by a first package mold structure on the substrate. The dummy die structure comprises a polymer resin and a filler, or comprises a metal which has a low coefficient of thermal expansion (CTE). A second package mold structure, which extends to the recess structure, is adjacent to the first package mold structure and to an IC die. In another embodiment, a first CTE of the dummy die is less than a second CTE of one of the package mold structures, and a first thermal conductivity of the dummy die is greater than a second thermal conductivity of the one of the package mold structures.
    Type: Application
    Filed: September 25, 2020
    Publication date: March 31, 2022
    Applicant: Intel Corporation
    Inventors: Mitul Modi, Joseph Van Nausdle, Omkar Karhade, Edvin Cetegen, Nicholas Haehn, Vaibhav Agrawal, Digvijay Raorane
  • Publication number: 20220102242
    Abstract: Techniques and mechanisms for facilitating heat conductivity in a packaged device with a dummy die. In an embodiment, a packaged device comprises a substrate and one or more IC die coupled to a surface thereof. A dummy die, adjacent to an IC die and coupled to a region of the substrate, comprises a polymer resin and a filler. A package mold structure of the packaged device adjoins respective sides of the IC die and the dummy die, and adjoins the surface of the substrate. In another embodiment, a first CTE of the dummy die is less than a second CTE of the package mold structure, and a first thermal conductivity of the dummy die is greater than a second thermal conductivity of the package mold structure.
    Type: Application
    Filed: September 25, 2020
    Publication date: March 31, 2022
    Applicant: Intel Corporation
    Inventors: Mitul Modi, Joseph Van Nausdle, Omkar Karhade, Edvin Cetegen, Nicholas Haehn, Vaibhav Agrawal, Digvijay Raorane, Dingying Xu, Ziyin Lin, Yiqun Bai
  • Publication number: 20210233867
    Abstract: Embodiments herein describe techniques for an IC package including a supporting layer having a first zone and a second zone. An electronic component is placed above the first zone of the supporting layer. An underfill material is formed above the first zone of the supporting layer, around or below the electronic component to support the electronic component. The second zone of the supporting layer includes a base area and multiple micro-pillars above the base area, where any two micro-pillars of the multiple micro-pillars are separated by a gap in between. The second zone has a hydrophobic surface including surfaces of the multiple micro-pillars and surfaces of the base area. The second zone is a keep out zone to prevent the underfill material from entering the second zone. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: January 24, 2020
    Publication date: July 29, 2021
    Inventors: Bassam ZIADEH, Joseph VAN NAUSDLE, Zhou YANG, William J. LAMBERT, Mitul MODI