Patents by Inventor Joseph W. Balch
Joseph W. Balch has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 6372328Abstract: A process for effectively bonding arbitrary size or shape substrates. The process incorporates vacuum pull down techniques to ensure uniform surface contact during the bonding process. The essence of the process for bonding substrates, such as glass, plastic, or alloys, etc., which have a moderate melting point with a gradual softening point curve, involves the application of an active vacuum source to evacuate interstices between the substrates while at the same time providing a positive force to hold the parts to be bonded in contact. This enables increasing the temperature of the bonding process to ensure that the softening point has been reached and small void areas are filled and come in contact with the opposing substrate. The process is most effective where at least one of the two plates or substrates contain channels or grooves that can be used to apply vacuum between the plates or substrates during the thermal bonding cycle.Type: GrantFiled: October 25, 1999Date of Patent: April 16, 2002Assignee: The Regents of the University of CaliforniaInventors: James C. Davidson, Joseph W. Balch
-
Patent number: 6352838Abstract: Manipulation of DNA molecules in solution has become an essential aspect of genetic analyses used for biomedical assays, the identification of hazardous bacterial agents, and in decoding the human genome. Currently, most of the steps involved in preparing a DNA sample for analysis are performed manually and are time, labor, and equipment intensive. These steps include extraction of the DNA from spores or cells, separation of the DNA from other particles and molecules in the solution (e.g. dust, smoke, cell/spore debris, and proteins), and separation of the DNA itself into strands of specific lengths. Dielectrophoresis (DEP), a phenomenon whereby polarizable particles move in response to a gradient in electric field, can be used to manipulate and separate DNA in an automated fashion, considerably reducing the time and expense involved in DNA analyses, as well as allowing for the miniaturization of DNA analysis instruments.Type: GrantFiled: April 7, 2000Date of Patent: March 5, 2002Assignee: The Regents of the Universtiy of CaliforniaInventors: Peter A. Krulevitch, Robin R. Miles, Xiao-Bo Wang, Raymond P. Mariella, Peter R. C. Gascoyne, Joseph W. Balch
-
Patent number: 6319379Abstract: A sample injection method for horizontal configured multiple chromatography or electrophoresis units, each containing a number of separation/analysis channels, that enables efficient introduction of analyte samples. This method for loading when taken in conjunction with horizontal microchannels allows much reduced sample volumes and a means of sample stacking to greatly reduce the concentration of the sample. This reduction in the amount of sample can lead to great cost savings in sample preparation, particularly in massively parallel applications such as DNA sequencing. The essence of this method is in preparation of the input of the separation channel, the physical sample introduction, and subsequent removal of excess material. By this method, sample volumes of 100 nanoliter to 2 microliters have been used successfully, compared to the typical 5 microliters of sample required by the prior separation/analysis method.Type: GrantFiled: August 23, 1999Date of Patent: November 20, 2001Assignee: The Regents of the University of CaliforniaInventors: J. Courtney Davidson, Joseph W. Balch
-
Patent number: 6301931Abstract: An improved apparatus and method for vacuum fusion bonding of large, patterned glass plates. One or both glass plates are patterned with etched features such as microstructure capillaries and a vacuum pumpout moat, with one plate having at least one hole therethrough for communication with a vacuum pumpout fixture. High accuracy alignment of the plates is accomplished by a temporary clamping fixture until the start of the fusion bonding heat cycle. A complete, void-free fusion bond of seamless, full-strength quality is obtained through the plates; because the glass is heated well into its softening point and because of a large, distributed force that is developed that presses the two plates together from the difference in pressure between the furnace ambient (high pressure) and the channeling and microstructures in the plates (low pressure) due to the vacuum drawn.Type: GrantFiled: November 24, 1999Date of Patent: October 16, 2001Assignee: The Regents of the University of CaliforniaInventors: Steve P. Swierkowski, James C. Davidson, Joseph W. Balch
-
Patent number: 6296749Abstract: A system and method is disclosed for chromatography and electrophoresis using circular optical scanning. One or more rectangular microchannel plates or radial microchannel plates has a set of analysis channels for insertion of molecular samples. One or more scanning devices repeatedly pass over the analysis channels in one direction at a predetermined rotational velocity and with a predetermined rotational radius. The rotational radius may be dynamically varied so as to monitor the molecular sample at various positions along a analysis channel. Sample loading robots may also be used to input molecular samples into the analysis channels. Radial microchannel plates are built from a substrate whose analysis channels are disposed at a non-parallel angle with respect to each other. A first step in the method accesses either a rectangular or radial microchannel plate, having a set of analysis channels, and second step passes a scanning device repeatedly in one direction over the analysis channels.Type: GrantFiled: April 13, 1999Date of Patent: October 2, 2001Assignee: The Regents of the University of CaliforniaInventors: Joseph W. Balch, Laurence R. Brewer, James C. Davidson, Joseph R. Kimbrough
-
Patent number: 6289695Abstract: An improved apparatus and method for vacuum fusion bonding of large, patterned glass plates. One or both glass plates are patterned with etched features such as microstructure capillaries and a vacuum pumpout moat, with one plate having at least one hole therethrough for communication with a vacuum pumpout fixture. High accuracy alignment of the plates is accomplished by a temporary clamping fixture until the start of the fusion bonding heat cycle. A complete, void-free fusion bond of seamless, full-strength quality is obtained through the plates; because the glass is heated well into its softening point and because of a large, distributed force that is developed that presses the two plates together from the difference in pressure between the furnace ambient (high pressure) and the channeling and microstructures in the plates (low pressure) due to the vacuum drawn.Type: GrantFiled: November 17, 1999Date of Patent: September 18, 2001Assignee: The Regents of the University of CaliforniaInventors: Steve P. Swierkowski, James C. Davidson, Joseph W. Balch
-
Patent number: 6153076Abstract: High throughput electrophoresis systems which provide extended well-to-read distances on smaller substrates, thus compacting the overall systems. The electrophoresis systems utilize a high density array of microchannels for electrophoresis analysis with extended read lengths. The microchannel geometry can be used individually or in conjunction to increase the effective length of a separation channel while minimally impacting the packing density of channels. One embodiment uses sinusoidal microchannels, while another embodiment uses plural microchannels interconnected by a via. The extended channel systems can be applied to virtually any type of channel confined chromatography.Type: GrantFiled: January 12, 1998Date of Patent: November 28, 2000Assignee: The Regents of the University of CaliforniaInventors: James C. Davidson, Joseph W. Balch
-
Patent number: 6131410Abstract: An improved apparatus and method for vacuum fusion bonding of large, patterned glass plates. One or both glass plates are patterned with etched features such as microstructure capillaries and a vacuum pumpout moat, with one plate having at least one hole therethrough for communication with a vacuum pumpout fixture. High accuracy alignment of the plates is accomplished by a temporary clamping fixture until the start of the fusion bonding heat cycle. A complete, void-free fusion bond of seamless, full-strength quality is obtained through the plates; because the glass is heated well into its softening point and because of a large, distributed force that is developed that presses the two plates together from the difference in pressure between the furnace ambient (high pressure) and the channeling and microstructures in the plates (low pressure) due to the vacuum drawn.Type: GrantFiled: March 16, 1998Date of Patent: October 17, 2000Assignee: The Regents of the University of CaliforniaInventors: Steve P. Swierkowski, James C. Davidson, Joseph W. Balch
-
Patent number: 6000243Abstract: A process for effectively bonding arbitrary size or shape substrates. The process incorporates vacuum pull down techniques to ensure uniform surface contact during the bonding process. The essence of the process for bonding substrates, such as glass, plastic, or alloys, etc., which have a moderate melting point with a gradual softening point curve, involves the application of an active vacuum source to evacuate interstices between the substrates while at the same time providing a positive force to hold the parts to be bonded in contact. This enables increasing the temperature of the bonding process to ensure that the softening point has been reached and small void areas are filled and come in contact with the opposing substrate. The process is most effective where at least one of the two plates or substrates contain channels or grooves that can be used to apply vacuum between the plates or substrates during the thermal bonding cycle.Type: GrantFiled: April 27, 1998Date of Patent: December 14, 1999Assignee: The Regents of the University of CaliforniaInventors: James C. Davidson, Joseph W. Balch
-
Patent number: 5980713Abstract: A micro injector sample delivery system for charged molecules. The injector is used for collecting and delivering controlled amounts of charged molecule samples for subsequent analysis. The injector delivery system can be scaled to large numbers (>96) for sample delivery to massively parallel high throughput analysis systems. The essence of the injector system is an electric field controllable loading tip including a section of porous material. By applying the appropriate polarity bias potential to the injector tip, charged molecules will migrate into porous material, and by reversing the polarity bias potential the molecules are ejected or forced away from the tip. The invention has application for uptake of charged biological molecules (e.g. proteins, nucleic acids, polymers, etc.) for delivery to analytical systems, and can be used in automated sample delivery systems.Type: GrantFiled: August 29, 1996Date of Patent: November 9, 1999Assignee: The Regents of the University of CaliforniaInventors: James C. Davidson, Joseph W. Balch
-
Patent number: 5746901Abstract: A hybrid slab-microchannel gel electrophoresis system. The hybrid system permits the fabrication of isolated microchannels for biomolecule separations without imposing the constraint of a totally sealed system. The hybrid system is reusable and ultimately much simpler and less costly to manufacture than a closed channel plate system. The hybrid system incorporates a microslab portion of the separation medium above the microchannels, thus at least substantially reducing the possibility of non-uniform field distribution and breakdown due to uncontrollable leakage. A microslab of the sieving matrix is built into the system by using plastic spacer materials and is used to uniformly couple the top plate with the bottom microchannel plate.Type: GrantFiled: April 5, 1996Date of Patent: May 5, 1998Assignee: Regents Of The University Of CaliforniaInventors: Joseph W. Balch, Anthony V. Carrano, James C. Davidson, Jackson C. Koo
-
Patent number: 5589136Abstract: A silicon-based sleeve type chemical reaction chamber that combines heaters, such as doped polysilicon for heating, and bulk silicon for convection cooling. The reaction chamber combines a critical ratio of silicon and silicon nitride to the volume of material to be heated (e.g., a liquid) in order to provide uniform heating, yet low power requirements. The reaction chamber will also allow the introduction of a secondary tube (e.g., plastic) into the reaction sleeve that contains the reaction mixture thereby alleviating any potential materials incompatibility issues. The reaction chamber may be utilized in any chemical reaction system for synthesis or processing of organic, inorganic, or biochemical reactions, such as the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction, which are examples of a synthetic, thermal-cycling-based reaction. The reaction chamber may also be used in synthesis instruments, particularly those for DNA amplification and synthesis.Type: GrantFiled: June 20, 1995Date of Patent: December 31, 1996Assignee: Regents of the University of CaliforniaInventors: M. Allen Northrup, Raymond P. Mariella, Jr., Anthony V. Carrano, Joseph W. Balch