Patents by Inventor Joseph W.F. Robertson

Joseph W.F. Robertson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11795191
    Abstract: This disclosure provides systems and methods for sequencing nucleic acids using nucleotide analogues and translocation of tags from incorporated nucleotide analogues through a nanopore. In aspects, this disclosure is related to composition, method, and system for sequencing a nucleic acid using tag molecules and detection of translocation through a nanopore of tags released from incorporation of the molecule.
    Type: Grant
    Filed: April 1, 2019
    Date of Patent: October 24, 2023
    Assignees: THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK, GOVERNMENT OF THE UNITED STATES, AS REPRESENTED BY THE SECRETARY OF COMMERCE
    Inventors: Jingyue Ju, Shiv Kumar, Chuanjuan Tao, Minchen Chien, James J. Russo, John J. Kasianowicz, Joseph W. F. Robertson
  • Publication number: 20190309008
    Abstract: This disclosure provides systems and methods for sequencing nucleic acids using nucleotide analogues and translocation of tags from incorporated nucleotide analogues through a nanopore. In aspects, this disclosure is related to composition, method, and system for sequencing a nucleic acid using tag molecules and detection of translocation through a nanopore of tags released from incorporation of the molecule.
    Type: Application
    Filed: April 1, 2019
    Publication date: October 10, 2019
    Applicants: THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK, Government of The United States of America, as Represented by The Secretary of Commerce
    Inventors: Jingyue JU, Shiv KUMAR, Chuanjuan TAO, Minchen CHIEN, James J. RUSSO, John J. KASIANOWICZ, Joseph W.F. ROBERTSON
  • Patent number: 10246479
    Abstract: This disclosure provides systems and methods for sequencing nucleic acids using nucleotide analogues and translocation of tags from incorporated nucleotide analogues through a nanopore. In aspects, this disclosure is related to composition, method, and system for sequencing a nucleic acid using tag molecules and detection of translocation through a nanopore of tags released from incorporation of the molecule.
    Type: Grant
    Filed: April 8, 2013
    Date of Patent: April 2, 2019
    Assignees: THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK, THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY OF COMMERCE
    Inventors: Jingyue Ju, Shiv Kumar, Chuanjuan Tao, Minchen Chien, James J. Russo, John J. Kasianowicz, Joseph W. F. Robertson
  • Publication number: 20150111759
    Abstract: This disclosure provides systems and methods for sequencing nucleic acids using nucleotide analogues and translocation of tags from incorporated nucleotide analogues through a nanopore. In aspects, this disclosure is related to composition, method, and system for sequencing a nucleic acid using tag molecules and detection of translocation through a nanopore of tags released from incorporation of the molecule.
    Type: Application
    Filed: April 8, 2013
    Publication date: April 23, 2015
    Applicants: The Trustees of Columbia University in the City of New York, Government of the United States of America, as Represented by the Secretary of Commerce
    Inventors: Jingyue Ju, Shiv Kumar, Chuanjuan Tao, Minchen Chien, James J. Russo, John J. Kasianowicz, Joseph W.F. Robertson
  • Publication number: 20100122907
    Abstract: A nanopore conductance measurement method and system is provided. The system has reservoirs of conductive fluid separated by a resistive barrier, which is perforated by a single nanometer scale pore commensurate in size with an analyte molecule in at least one of the reservoirs. The system is configured to have an ionic current driven across the reservoirs by an applied potential and the pore may be treated so that the pore surface can form associations with the analyte molecules of interest to increase the analyte molecule residence times on or in the pore. The system also comprises a means of measuring the ionic current, which current may be either direct or alternating in time, induced by an applied potential between electrodes in the conductive fluid, on each side of the barrier.
    Type: Application
    Filed: May 5, 2009
    Publication date: May 20, 2010
    Inventors: Vincent M. Stanford, John J. Kasianowicz, Joseph W.F. Robertson, Claudio G. Rodrigues, Oleg V. Krasilnikov