Patents by Inventor Joseph Walish

Joseph Walish has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10370477
    Abstract: The present invention provides polymeric materials arranged as photonic crystals, or portions of photonic crystals, having properties which can be easily tuned over a large range of wavelengths upon exposure to an external stimulus. In some embodiments, the photonic crystals comprise at least one portion which can undergo a change in a physical, chemical, dielectric, or other property upon exposure to an altering stimulus, resulting in a change in a diffracted wavelength of electromagnetic radiation (e.g, light) by the photonic crystal. Embodiments of the invention may advantageously exhibit large stop band tunability and rapid response times. Photonic crystals of the invention may be useful in a wide variety of applications, such as colorimetric sensors, active components of simple display devices, electrically controlled tunable optically pumped laser, photonic switches, multiband filters, and the like.
    Type: Grant
    Filed: May 9, 2016
    Date of Patent: August 6, 2019
    Assignee: Massachusetts Institute of Technology
    Inventors: Youngjong Kang, Joseph Walish, Edwin L. Thomas
  • Patent number: 9995719
    Abstract: Methods for depositing materials on patterned substrates, and related devices, are generally provided. In some embodiments, a material is deposited on a patterned substrate. In certain embodiments, the substrate comprises a first portion with a material deposited on the first portion and a second portion of the substrate essentially free of the material. The methods described herein may be useful in fabricating sensors, circuits, tags, among other devices. In some cases, devices for determining analytes are also provided.
    Type: Grant
    Filed: August 20, 2015
    Date of Patent: June 12, 2018
    Assignee: Massachusetts Institute of Technology
    Inventors: Timothy M. Swager, Kelvin Mitchell Frazier, Katherine A. Mirica, Joseph Walish
  • Patent number: 9770709
    Abstract: The present invention generally relates to compositions comprising and methods for forming functionalized carbon-based nanostructures.
    Type: Grant
    Filed: March 26, 2015
    Date of Patent: September 26, 2017
    Assignee: Massachusetts Institute of Technology
    Inventors: Timothy M. Swager, William R. Collins, Wiktor Lewandowski, Ezequiel Schmois, Stefanie Sydlik, Joseph Walish, John B. Goods
  • Publication number: 20160326295
    Abstract: The present invention provides polymeric materials arranged as photonic crystals, or portions of photonic crystals, having properties which can be easily tuned over a large range of wavelengths upon exposure to an external stimulus. In some embodiments, the photonic crystals comprise at least one portion which can undergo a change in a physical, chemical, dielectric, or other property upon exposure to an altering stimulus, resulting in a change in a diffracted wavelength of electromagnetic radiation (e.g, light) by the photonic crystal. Embodiments of the invention may advantageously exhibit large stop band tunability and rapid response times. Photonic crystals of the invention may be useful in a wide variety of applications, such as colorimetric sensors, active components of simple display devices, electrically controlled tunable optically pumped laser, photonic switches, multiband filters, and the like.
    Type: Application
    Filed: May 9, 2016
    Publication date: November 10, 2016
    Applicant: Massachusetts Institute of Technology
    Inventors: Youngjong Kang, Joseph Walish, Edwin L. Thomas
  • Publication number: 20160195504
    Abstract: Methods for depositing materials on patterned substrates, and related devices, are generally provided. In some embodiments, a material is deposited on a patterned substrate. In certain embodiments, the substrate comprises a first portion with a material deposited on the first portion and a second portion of the substrate essentially free of the material. The methods described herein may be useful in fabricating sensors, circuits, tags, among other devices. In some cases, devices for determining analytes are also provided.
    Type: Application
    Filed: August 20, 2015
    Publication date: July 7, 2016
    Applicant: Massachusetts Institute of Technology
    Inventors: Timothy M. Swager, Kelvin Mitchell Frazier, Katherine A. Mirica, Joseph Walish
  • Patent number: 9360604
    Abstract: The present invention provides polymeric materials arranged as photonic crystals, or portions of photonic crystals, having properties which can be easily tuned over a large range of wavelengths upon exposure to an external stimulus. In some embodiments, the photonic crystals comprise at least one portion which can undergo a change in a physical, chemical, dielectric, or other property upon exposure to an altering stimulus, resulting in a change in a diffracted wavelength of electromagnetic radiation (e.g, light) by the photonic crystal. Embodiments of the invention may advantageously exhibit large stop band tunability and rapid response times. Photonic crystals of the invention may be useful in a wide variety of applications, such as colorimetric sensors, active components of simple display devices, electrically controlled tunable optically pumped laser, photonic switches, multiband filters, and the like.
    Type: Grant
    Filed: June 13, 2012
    Date of Patent: June 7, 2016
    Assignee: Massachusetts Institute of Technology
    Inventors: Youngjong Kang, Joseph Walish, Edwin L. Thomas
  • Publication number: 20150336092
    Abstract: The present invention generally relates to compositions comprising and methods for forming functionalized carbon-based nanostructures.
    Type: Application
    Filed: March 26, 2015
    Publication date: November 26, 2015
    Applicant: Massachusetts Institute of Technology
    Inventors: Timothy M. Swager, William R. Collins, Wiktor Lewandowski, Ezequiel Schmois, Stefanie Sydlik, Joseph Walish, John B. Goods
  • Patent number: 8476510
    Abstract: The present invention generally relates to compositions comprising and methods for forming functionalized carbon-based nanostructures.
    Type: Grant
    Filed: November 3, 2011
    Date of Patent: July 2, 2013
    Assignee: Massachusetts Institute of Technology
    Inventors: Timothy M. Swager, William R. Collins, Wiktor Lewandowski, Ezequiel Schmois, Stefanie Sydlik, Joseph Walish, John B. Goods
  • Publication number: 20130015417
    Abstract: The present invention provides polymeric materials arranged as photonic crystals, or portions of photonic crystals, having properties which can be easily tuned over a large range of wavelengths upon exposure to an external stimulus. In some embodiments, the photonic crystals comprise at least one portion which can undergo a change in a physical, chemical, dielectric, or other property upon exposure to an altering stimulus, resulting in a change in a diffracted wavelength of electromagnetic radiation (e.g, light) by the photonic crystal. Embodiments of the invention may advantageously exhibit large stop band tunability and rapid response times. Photonic crystals of the invention may be useful in a wide variety of applications, such as colorimetric sensors, active components of simple display devices, electrically controlled tunable optically pumped laser, photonic switches, multiband filters, and the like.
    Type: Application
    Filed: June 13, 2012
    Publication date: January 17, 2013
    Applicant: Massachusetts Institute of Technology
    Inventors: Youngjong Kang, Joseph Walish, Edwin L. Thomas
  • Publication number: 20120171093
    Abstract: The present invention generally relates to compositions comprising and methods for forming functionalized carbon-based nanostructures.
    Type: Application
    Filed: November 3, 2011
    Publication date: July 5, 2012
    Applicant: Massachusetts Institute of Technology
    Inventors: Timothy M. Swager, William R. Collins, Wiktor Lewandowski, Ezequiel Schmois, Stefanie Sydlik, Joseph Walish, John B. Goods
  • Publication number: 20120116094
    Abstract: The present invention generally relates to compositions comprising and methods for forming functionalized carbon-based nanostructures.
    Type: Application
    Filed: November 3, 2011
    Publication date: May 10, 2012
    Applicant: Massachusetts Institute of Technology
    Inventors: Timothy M. Swager, William R. Collins, Wiktor Lewandowski, Ezequiel Schmois, Stefanie Sydlik, Joseph Walish, John B. Goods
  • Publication number: 20090086208
    Abstract: The present invention provides polymeric materials arranged as photonic crystals, or portions of photonic crystals, having properties which can be easily tuned over a large range of wavelengths upon exposure to an external stimulus. In some embodiments, the photonic crystals comprise at least one portion which can undergo a change in a physical, chemical, dielectric, or other property upon exposure to an altering stimulus, resulting in a change in a diffracted wavelength of electromagnetic radiation (e.g, light) by the photonic crystal. Embodiments of the invention may advantageously exhibit large stop band tunability and rapid response times. Photonic crystals of the invention may be useful in a wide variety of applications, such as colorimetric sensors, active components of simple display devices, electrically controlled tunable optically pumped laser, photonic switches, multiband filters, and the like.
    Type: Application
    Filed: September 26, 2008
    Publication date: April 2, 2009
    Applicant: Massachusetts Institute of Technology
    Inventors: Youngjong Kang, Joseph Walish, Edwin L. Thomas
  • Publication number: 20050260093
    Abstract: The present invention relates to the fabrication of low cost, in situ, porous metallic, ceramic and cermet foam structures having improved mechanical properties such as energy absorption and specific stiffness. Methods of fabricating the structures from compositions including ceramic and/or metallic powders are provided. The flowable compositions also include an immiscible phase that results in pores within the final structure. Furthermore, the structures may be shaped to have external porosity, such as with mesh-like structures.
    Type: Application
    Filed: January 28, 2005
    Publication date: November 24, 2005
    Applicant: Advanced Ceramics Research, Inc.
    Inventors: Gregory Artz, K. Vaidyanathan, Michael Fulcher, Mark Rigali, John Lombardi, Joseph Walish, Ronald Cipriani
  • Publication number: 20050230029
    Abstract: A process for continuous composite coextrusion comprising: (a) forming first a material-laden composition comprising a thermoplastic polymer and at least about 40 volume % of a ceramic or metallic particulate in a manner such that the composition has a substantially cylindrical geometry and thus can be used as a substantially cylindrical feed rod; (b) forming a hole down the symmetrical axis of the feed rod; (c) inserting the start of a continuous spool of ceramic fiber, metal fiber or carbon fiber through the hole in the feed rod; (d) extruding the feed rod and spool simultaneously to form a continuous filament consisting of a green matrix material completely surrounding a dense fiber reinforcement and said filament having an average diameter that is less than the average diameter of the feed rod; and (e) depositing the continuous filament into a desired architecture which preferably is determined from specific loading conditions of the desired object and CAD design of the object to provide a green fiber rei
    Type: Application
    Filed: May 17, 2005
    Publication date: October 20, 2005
    Applicant: Advanced Ceramics Research, Inc.
    Inventors: K. Vaidyanathan, Joseph Walish, Mark Fox, John Gillespie, Shridhar Yarlagadda, Michael Effinger, Anthony Mulligan, Mark Rigali
  • Publication number: 20050116136
    Abstract: The present invention relates to a low density, water-soluble coring and tooling material used for the fabrication of composite parts. One aspect of the present invention relates to a lightweight, strong composite coring material that can be easily shaped and removed from cured composite parts. Another aspect of the present invention relates to a lightweight, strong composite tooling material that is easily tailored to provide a specific coefficient of thermal expansion and thermal conductivity, thus providing a tooling material that can be matched to the composite structure and material being fabricated.
    Type: Application
    Filed: October 14, 2004
    Publication date: June 2, 2005
    Applicant: Advanced Ceramics Research, Inc.
    Inventors: Gregory Artz, John Lombardi, K. Vaidyanathan, Joseph Walish
  • Patent number: 6899777
    Abstract: A process for continuous composite coextrusion comprising: (a) forming first a material-laden composition comprising a thermoplastic polymer and at least about 40 volume % of a ceramic or metallic particulate in a manner such that the composition has a substantially cylindrical geometry and thus can be used as a substantially cylindrical feed rod; (b) forming a hole down the symmetrical axis of the feed rod; (c) inserting the start of a continuous spool of ceramic fiber, metal fiber or carbon fiber through the hole in the feed rod; (d) extruding the feed rod and spool simultaneously to form a continuous filament consisting of a green matrix material completely surrounding a dense fiber reinforcement and said filament having an average diameter that is less than the average diameter of the feed rod; and (e) depositing the continuous filament into a desired architecture which preferably is determined from specific loading conditions of the desired object and CAD design of the object to provide a green fiber rei
    Type: Grant
    Filed: January 2, 2002
    Date of Patent: May 31, 2005
    Assignee: Advanced Ceramics Research, Inc.
    Inventors: K. Ranji Vaidyanathan, Joseph Walish, Mark Fox, John W. Gillespie, Jr., Shridhar Yarlagadda, Michael R. Effinger, Anthony C. Mulligan, Mark J. Rigali
  • Patent number: 6852272
    Abstract: The present invention relates to the fabrication of low cost, in situ, porous metallic, ceramic and cermet foam structures having improved mechanical properties such as energy absorption and specific stiffness. Methods of fabricating the structures from compositions including ceramic and/or metallic powders are provided. The flowable compositions also include an immiscible phase that results in pores within the final structure. Furthermore, the structures may be shaped to have external porosity, such as with mesh-like structures.
    Type: Grant
    Filed: January 27, 2003
    Date of Patent: February 8, 2005
    Assignee: Advanced Ceramics Research, Inc.
    Inventors: Gregory Artz, K. Ranji Vaidyanathan, Michael L. Fulcher, Mark J. Rigali, John L. Lombardi, Joseph Walish, Ronald A. Cipriani
  • Patent number: 6828373
    Abstract: The present invention relates to a low density, water-soluble coring and tooling material used for the fabrication of composite parts. One aspect of the present invention relates to a lightweight, strong composite coring material that can be easily shaped and removed from cured composite parts. Another aspect of the present invention relates to a lightweight, strong composite tooling material that is easily tailored to provide a specific coefficient of thermal expansion and thermal conductivity, thus providing a tooling material that can be matched to the composite structure and material being fabricated.
    Type: Grant
    Filed: March 6, 2002
    Date of Patent: December 7, 2004
    Assignee: Advanced Ceramics Research, Inc.
    Inventors: Gregory J. Artz, John L. Lombardi, K. Ranji Vaidyanathan, Joseph Walish
  • Publication number: 20030180171
    Abstract: The present invention relates to the fabrication of low cost, in situ, porous metallic, ceramic and cermet foam structures having improved mechanical properties such as energy absorption and specific stiffness. Methods of fabricating the structures from compositions including ceramic and/or metallic powders are provided. The flowable compositions also include an immiscible phase that results in pores within the final structure. Furthermore, the structures may be shaped to have external porosity, such as with mesh-like structures.
    Type: Application
    Filed: January 27, 2003
    Publication date: September 25, 2003
    Applicant: Advanced Ceramics Research, Inc.
    Inventors: Gregory Artz, K. Ranji Vaidyanathan, Michael L. Fulcher, Mark J. Rigali, John L. Lombardi, Joseph Walish, Ronald A. Cipriani
  • Publication number: 20030044593
    Abstract: A process for continuous composite coextrusion comprising: (a) forming first a material-laden composition comprising a thermoplastic polymer and at least about 40 volume % of a ceramic or metallic particulate in a manner such that the composition has a substantially cylindrical geometry and thus can be used as a substantially cylindrical feed rod; (b) forming a hole down the symmetrical axis of the feed rod; (c) inserting the start of a continuous spool of ceramic fiber, metal fiber or carbon fiber through the hole in the feed rod; (d) extruding the feed rod and spool simultaneously to form a continuous filament consisting of a green matrix material completely surrounding a dense fiber reinforcement and said filament having an average diameter that is less than the average diameter of the feed rod; and (e) depositing the continuous filament into a desired architecture which preferably is determined from specific loading conditions of the desired object and CAD design of the object to provide a green fiber rei
    Type: Application
    Filed: January 2, 2002
    Publication date: March 6, 2003
    Inventors: K. Ranji Vaidyanathan, Joseph Walish, Mark Fox, John W. Gillespie, Shridhar Yarlagadda, Michael R. Effinger, Anthony C. Mulligan, Mark J. Rigali