Patents by Inventor Joseph Wang

Joseph Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190090809
    Abstract: Techniques and systems are disclosed for implementing textile-based screen-printed amperometric or potentiometric sensors. The chemical sensor can include carbon based electrodes to detect at least one of NADH, hydrogen peroxide, potassium ferrocyanide, TNT or DNT, in liquid or vapor phase. In one application, underwater presence of chemicals such as heavy metals and explosives is detected using the textile-based sensors.
    Type: Application
    Filed: November 7, 2017
    Publication date: March 28, 2019
    Inventors: Joseph Wang, Joshua Ray Windmiller
  • Publication number: 20190070314
    Abstract: Methods, systems, and devices are disclosed for intracellular payload delivery by nanomotor structures. In some aspects, a nanomotor for intracellular payload delivery includes an asymmetric body having a concave cavity at one end of the nanowire body; a functionalization layer on an outer surface of the nanowire body; and a payload substance coupled to the nanomotor by the functionalization layer in a biologically active conformation, wherein the payload substance is attached to a portion of the functionalization layer or at least partially encapsulated within the functionalization layer, in which the nanomotor is operable to propel in a biological medium and into an intracellular region of a living cell to initiate an interaction of the biologically active payload substance with an intracellular constituent of the living cell.
    Type: Application
    Filed: March 28, 2018
    Publication date: March 7, 2019
    Inventors: Joseph Wang, Berta Esteban-Fernández de Ávila, Yi Chen, Chava Angell, Fernando Soto Alvarez, Liangfang Zhang, Malthe Hansen-Bruhn
  • Publication number: 20190035996
    Abstract: A thermoelectric material ink including a binder with a cellulosic ether, a thermoelectric element, and a thermoelectric device that are manufactured using the thermoelectric material ink, and a method of manufacturing the thermoelectric device are provided. A printed thermoelectric device having high thermoelectric performance may be manufactured using the thermoelectric material ink.
    Type: Application
    Filed: July 30, 2018
    Publication date: January 31, 2019
    Inventors: Renkun CHEN, Joseph WANG, Sunmi SHIN, Rajan KUMAR, Jongwook ROH
  • Publication number: 20180347057
    Abstract: Methods, structures, devices and systems are disclosed for fabrication of microtube engines using membrane template electrodeposition. Such nanomotors operate based on bubble-induced propulsion in biological fluids and salt-rich environments. In one aspect, fabricating microengines includes depositing a polymer layer on a membrane template, depositing a conductive metal layer on the polymer layer, and dissolving the membrane template to release the multilayer microtubes.
    Type: Application
    Filed: April 30, 2018
    Publication date: December 6, 2018
    Applicant: The Regents of the University of California
    Inventors: Joseph Wang, Wei Gao, Sirilak Sattayasamitsathit
  • Patent number: 10136846
    Abstract: Methods, structures, and systems are disclosed for biosensing and drug delivery techniques. In one aspect, a device for detecting an analyte and/or releasing a biochemical into a biological fluid can include an array of hollowed needles, in which each needle includes a protruded needle structure including an exterior wall forming a hollow interior and an opening at a terminal end of the protruded needle structure that exposes the hollow interior, and a probe inside the exterior wall to interact with one or more chemical or biological substances that come in contact with the probe via the opening to produce a probe sensing signal, and an array of wires that are coupled to probes of the array of hollowed needles, respectively, each wire being electrically conductive to transmit the probe sensing signal produced by a respective probe.
    Type: Grant
    Filed: August 25, 2017
    Date of Patent: November 27, 2018
    Assignees: The Regents of the University of California, North Carolina State University, National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Joseph Wang, Joshua Ray Windmiller, Roger Narayan, Phillip Miller, Ronen Polsky, Thayne L. Edwards
  • Patent number: 10143081
    Abstract: Disclosed are compositions, devices, systems and fabrication methods for stretchable composite materials and stretchable electronics devices. In some aspects, an elastic composite material for a stretchable electronics device includes a first material having a particular electrical, mechanical or optical property; and a multi-block copolymer configured to form a hyperelastic binder that creates contact between the first material and the multi-block copolymer, in which the elastic composite material is structured to stretch at least 500% in at least one direction of the material and to exhibit the particular electrical, mechanical or optical property imparted from the first material. In some aspects, the stretchable electronics device includes a stretchable battery, biofuel cell, sensor, supercapacitor or other device able to be mounted to skin, clothing or other surface of a user or object.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: November 27, 2018
    Assignee: The Regents of the University of California
    Inventors: Joseph Wang, Rajan Kumar, Ying Shirley Meng, Jae Wook Shin, Lu Yin
  • Publication number: 20180220967
    Abstract: Methods, structures, devices and systems are disclosed for fabricating and implementing electrochemical biosensors and chemical sensors. In one aspect, a method of producing an epidermal biosensor includes forming an electrode pattern onto a coated surface of a paper-based substrate to form an electrochemical sensor, the electrode pattern including an electrically conductive material and an electrically insulative material configured in a particular design layout, and attaching an adhesive sheet on a surface of the electrochemical sensor having the electrode pattern, the adhesive sheet capable of adhering to skin or a wearable item, in which the electrochemical sensor, when attached to the skin or the wearable item, is operable to detect chemical analytes within an external environment.
    Type: Application
    Filed: November 7, 2017
    Publication date: August 9, 2018
    Inventors: Joseph Wang, Joshua Ray Windmiller, Amay Jairaj Bandodkar
  • Patent number: 9982356
    Abstract: Methods, structures, devices and systems are disclosed for fabrication of microtube engines using membrane template electrodeposition. Such nanomotors operate based on bubble-induced propulsion in biological fluids and salt-rich environments. In one aspect, fabricating microengines includes depositing a polymer layer on a membrane template, depositing a conductive metal layer on the polymer layer, and dissolving the membrane template to release the multilayer microtubes.
    Type: Grant
    Filed: May 23, 2016
    Date of Patent: May 29, 2018
    Assignee: The Regents of the University of California
    Inventors: Joseph Wang, Wei Gao, Sirilak Sattayasamitsathit
  • Publication number: 20180146545
    Abstract: Disclosed are compositions, devices, systems and fabrication methods for stretchable composite materials and stretchable electronics devices. In some aspects, an elastic composite material for a stretchable electronics device includes a first material having a particular electrical, mechanical or optical property; and a multi-block copolymer configured to form a hyperelastic binder that creates contact between the first material and the multi-block copolymer, in which the elastic composite material is structured to stretch at least 500% in at least one direction of the material and to exhibit the particular electrical, mechanical or optical property imparted from the first material. In some aspects, the stretchable electronics device includes a stretchable battery, biofuel cell, sensor, supercapacitor or other device able to be mounted to skin, clothing or other surface of a user or object.
    Type: Application
    Filed: November 21, 2017
    Publication date: May 24, 2018
    Inventors: Joseph Wang, Rajan Kumar, Ying Meng, Jae Wook Shin, Lu Yin
  • Publication number: 20180030497
    Abstract: Methods, systems, and devices are disclosed for providing a portable enzymatic-ink dispensing system. The system includes an enzymatic-ink including one or more biocompatible binders, one or more biocompatible mediators, an enzyme, an enzyme stabilizer, and a conductive material. The system includes a dispenser including a chamber to hold the enzymatic-ink and an applicator to apply the enzymatic ink dispensed from the chamber onto a target substrate.
    Type: Application
    Filed: February 5, 2016
    Publication date: February 1, 2018
    Applicant: The Regents of the University of California
    Inventors: Joseph Wang, Amay Jairaj Bandodkar
  • Patent number: 9879310
    Abstract: Techniques, systems, devices and materials are disclosed for capturing, isolating and transporting target biomolecules and living organisms. In one aspect, a device includes a tube structured to include a large opening and a small opening that are on opposite ends of the tube, and a tube body connecting the openings and having a cross section spatially reducing in size from the large opening to the small opening, in which the tube includes a layered wall including an inner layer having a catalyst material that is reactive with a fuel fluid to produce bubbles exiting the tube from the large opening to propel the tube to move in the fuel fluid and an external layer formed of a material capable of being functionalized, and a molecular layer functionalized onto the external layer of the tube and structured to attach to a targeted molecule in the fuel fluid.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: January 30, 2018
    Assignee: The Regents of the University of California
    Inventors: Joseph Wang, Shankar Balasubramanian, Daniel Kagan, Susana Campuzano-Ruiz
  • Patent number: 9868991
    Abstract: Techniques and systems are disclosed for detecting biomolecular interactions based on the motion of nanomotors. In one aspect, a method of detecting biomolecular interactions based on a motion of a nanomachine includes functionalizing a nanomachine with a capture probe adapted to interact with biological targets; and detecting a presence of the biological targets in an environment based on a motion of the nanomachine.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: January 16, 2018
    Assignee: The Regents of the University of California
    Inventors: Joseph Wang, Jie Wu, Shankar Balasubramanian, Daniel Kagan, Kalayil Manian Manesh
  • Patent number: 9844339
    Abstract: Techniques and systems are disclosed for implementing textile-based screen-printed amperometric or potentiometric sensors. The chemical sensor can include carbon based electrodes to detect at least one of NADH, hydrogen peroxide, potassium ferrocyanide, TNT or DNT, in liquid or vapor phase. In one application, underwater presence of chemicals such as heavy metals and explosives is detected using the textile-based sensors.
    Type: Grant
    Filed: September 4, 2015
    Date of Patent: December 19, 2017
    Assignee: The Regents of the University of California
    Inventors: Joseph Wang, Joshua Ray Windmiller
  • Publication number: 20170347925
    Abstract: Methods, structures, and systems are disclosed for biosensing and drug delivery techniques. In one aspect, a device for detecting an analyte and/or releasing a biochemical into a biological fluid can include an array of hollowed needles, in which each needle includes a protruded needle structure including an exterior wall forming a hollow interior and an opening at a terminal end of the protruded needle structure that exposes the hollow interior, and a probe inside the exterior wall to interact with one or more chemical or biological substances that come in contact with the probe via the opening to produce a probe sensing signal, and an array of wires that are coupled to probes of the array of hollowed needles, respectively, each wire being electrically conductive to transmit the probe sensing signal produced by a respective probe.
    Type: Application
    Filed: August 25, 2017
    Publication date: December 7, 2017
    Applicants: The Regents of the University of California, North Carolina State University, National Technology & Engineering Solutions of San Sandia, LLC
    Inventors: Joseph Wang, Joshua Ray Windmiller, Roger Narayan, Phillip Miller, Ronen Polsky, Thayne L. Edwards
  • Publication number: 20170350848
    Abstract: Methods, systems, and devices are disclosed for the identification of chemical agents and determination of their level of exposure using electrochemical detection and advanced signal processing. In one aspect, a method includes collecting a sample from a surface containing a chemical agent to an electrode on a sensor such that the chemical agent transfers on the electrode, detecting an electrochemical signal of the chemical agent on the electrode to transduce chemical information associated with the chemical agent to an electrical signal, processing the electrical signal to obtain electrochemical spectral signature data to identify the chemical agent and generating a series of coefficients of the electrochemical spectral signature data to reduce the data, and classifying the chemical information based on the series of coefficients among preselected data sets to determine a level of exposure to the chemical agent.
    Type: Application
    Filed: June 7, 2017
    Publication date: December 7, 2017
    Inventors: Joseph Wang, Joshua Ray Windmiller, Aoife O'Mahony, Xavier Cetó, Manel Del Valle
  • Patent number: 9820692
    Abstract: Methods, structures, devices and systems are disclosed for fabricating and implementing electrochemical biosensors and chemical sensors. In one aspect, a method of producing an epidermal biosensor includes forming an electrode pattern onto a coated surface of a paper-based substrate to form an electrochemical sensor, the electrode pattern including an electrically conductive material and an electrically insulative material configured in a particular design layout, and attaching an adhesive sheet on a surface of the electrochemical sensor having the electrode pattern, the adhesive sheet capable of adhering to skin or a wearable item, in which the electrochemical sensor, when attached to the skin or the wearable item, is operable to detect chemical analytes within an external environment.
    Type: Grant
    Filed: May 10, 2013
    Date of Patent: November 21, 2017
    Assignee: The Regents of the University of California
    Inventors: Joseph Wang, Joshua Ray Windmiller, Amay Jairaj Bandodkar
  • Publication number: 20170325724
    Abstract: A non-invasive epidermal electrochemical sensor device includes an adhesive membrane; a flexible or stretchable substrate disposed over the adhesive membrane; and an anodic electrode assembly disposed over the flexible or stretchable substrate including an iontophoretic electrode. The device includes a cathodic electrode assembly disposed adjacent to the anodic electrode assembly over the flexible or stretchable substrate and includes an iontophoretic electrode. Either the cathodic electrode assembly or the anodic electrode assembly also includes a sensing electrode that includes a working electrode and at least one of a counter electrode or a reference electrode. The iontophoretic electrode in either the anodic electrode assembly or the cathodic electrode assembly that includes the sensing electrode is disposed on the substrate to at least partially encompass the working electrode and the at least one of the counter electrode or the reference electrode.
    Type: Application
    Filed: December 3, 2015
    Publication date: November 16, 2017
    Inventors: Joseph Wang, Amay Jairaj Bandodkar, Patrick Mercier
  • Patent number: 9746468
    Abstract: Methods, systems, devices and materials are disclosed for implementing a bioaffinity sensor having a self-assembled monolayer interface for detection of a target molecule. In one aspect, a sensor device for detecting a target molecule includes a surface capable of attaching a thiol and a molecular monolayer formed on the surface that includes a molecular capture probe having a thiol region, a linear alkanethiol molecule having one thiol region, and a linear alkanedithiol molecule having two thiol regions, in which the molecular capture probe includes a region for receiving a target substance having a complimentary region that couples with the region of the molecular capture probe to generate a detectable signal.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: August 29, 2017
    Assignee: The Regents of the University of California
    Inventors: Joseph Wang, Susana Campuzano-Ruiz
  • Patent number: 9743870
    Abstract: Methods, structures, and systems are disclosed for biosensing and drug delivery techniques. In one aspect, a device for detecting an analyte and/or releasing a biochemical into a biological fluid can include an array of hollowed needles, in which each needle includes a protruded needle structure including an exterior wall forming a hollow interior and an opening at a terminal end of the protruded needle structure that exposes the hollow interior, and a probe inside the exterior wall to interact with one or more chemical or biological substances that come in contact with the probe via the opening to produce a probe sensing signal, and an array of wires that are coupled to probes of the array of hollowed needles, respectively, each wire being electrically conductive to transmit the probe sensing signal produced by a respective probe.
    Type: Grant
    Filed: December 10, 2015
    Date of Patent: August 29, 2017
    Assignees: The Regents of the University of California, North Carolina State University, National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Joseph Wang, Joshua Ray Windmiller, Roger Narayan, Philip Miller, Ronen Polsky, Thayne L. Edwards
  • Patent number: 9737247
    Abstract: Methods, structures, and systems are disclosed for biosensing and drug delivery techniques. In one aspect, a^ device for detecting an analyte and/or releasing a biochemical into a biological fluid can include an array of hollowed needles, in which each needle includes a protruded needle structure including an exterior wall forming a hollow interior and an opening at a terminal end of the protruded needle structure that exposes the hollow interior, and a probe inside the exterior wall to interact with one or more chemical or biological substances that come in contact with the probe via the opening to produce a probe sensing signal, and an array of wires that are coupled to probes of the array of hollowed needles, respectively, each wire being electrically conductive to transmit the probe sensing signal produced by a respective probe.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: August 22, 2017
    Assignees: The Regents of the University of California, North Carolina State University, National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Joseph Wang, Joshua Ray Windmiller, Roger Narayan, Philip Miller, Ronen Polsky, Thayne L. Edwards