Patents by Inventor Josephus van Engelen

Josephus van Engelen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180131382
    Abstract: Systems and methods for converting analog signals to digital signals. A reference slice is associated with each of a plurality of active slices to balance the loading on an active sampling track and hold amplifier within each active slice. Alternatively, the reference slice is split into a portion having a reference ADC that is shared by a plurality of partial reference slices, each partial reference slice having a partial reference input module.
    Type: Application
    Filed: January 9, 2018
    Publication date: May 10, 2018
    Inventors: Josephus Van Engelen, Aaron Buchwald, Ralph Duncan
  • Patent number: 9866230
    Abstract: Systems and methods for converting analog signals to digital signals. A reference slice is associated with each of a plurality of active slices to balance the loading on an active sampling track and hold amplifier within each active slice. Alternatively, the reference slice is split into a portion having a reference ADC that is shared by a plurality of partial reference slices, each partial reference slice having a partial reference input module.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: January 9, 2018
    Assignee: Entropic Communications, LLC
    Inventors: Josephus Van Engelen, Aaron Buchwald, Ralph Duncan
  • Patent number: 9762252
    Abstract: Methods and systems for a digitally controlled oscillator may comprise, for example, an all-digital all digital phase locked loop (ADPLL) for generating an output clock signal from a reference clock signal, the ADPLL comprising a thermometer pulse coder comprising a plurality of frequency control word signal lines. the thermometer pulse coder may be configured to generate a frequency control word from a binary encoded frequency control word, where the frequency control word may comprise hermometer coded signals and a pulse modulated dither signal, and may select a frequency control word signal line over which to transmit the pulse modulated dither signal and may transmit the thermometer coded signals over another of frequency control word signal lines. A digitally controlled oscillator may be configured to receive a frequency control word and generate an output clock signal at a frequency determined using at least the frequency control word.
    Type: Grant
    Filed: September 16, 2013
    Date of Patent: September 12, 2017
    Assignee: Entropic Communications, LLC
    Inventors: Josephus A. Van Engelen, Hairong Yu, Howard A. Baumer
  • Publication number: 20170111054
    Abstract: Systems and methods for converting analog signals to digital signals. A reference slice is associated with each of a plurality of active slices to balance the loading on an active sampling track and hold amplifier within each active slice. Alternatively, the reference slice is split into a portion having a reference ADC that is shared by a plurality of partial reference slices, each partial reference slice having a partial reference input module.
    Type: Application
    Filed: December 30, 2016
    Publication date: April 20, 2017
    Inventors: Josephus Van Engelen, Aaron Buchwald, Ralph Duncan
  • Patent number: 9537502
    Abstract: A system for calibrating time interleaved ADCs is disclosed and may include a time interleaved analog-to-digital converter (ADC) for converting analog signals to digital signals, the time interleaved ADC comprising: a plurality of active slices, and a plurality of reference slices, each reference slice associated with a corresponding one of the plurality of active slices. An output of each reference slice may be used to correct distortion in an output of the corresponding active slice. Each active slice may sample an input signal at a first rate and each associated reference slice may sample the input signal at a second rate, the second rate being slower than the first rate. Each sample taken by one of the plurality of reference slices may then be taken concurrent with a sample taken by the associated active slice. Each reference slice may include a reference sampling module and a dummy load.
    Type: Grant
    Filed: September 18, 2015
    Date of Patent: January 3, 2017
    Assignee: Entropic Communications, LLC
    Inventors: Josephus Van Engelen, Aaron Buchwald, Ralph Duncan
  • Publication number: 20160233870
    Abstract: Methods and systems for a digitally controlled oscillator may comprise, for example, an all-digital all digital phase locked loop (ADPLL) for generating an output clock signal from a reference clock signal, the ADPLL comprising a thermometer pulse coder comprising a plurality of frequency control word signal lines. the thermometer pulse coder may be configured to generate a frequency control word from a binary encoded frequency control word, where the frequency control word may comprise hermometer coded signals and a pulse modulated dither signal, and may select a frequency control word signal line over which to transmit the pulse modulated dither signal and may transmit the thermometer coded signals over another of frequency control word signal lines. A digitally controlled oscillator may be configured to receive a frequency control word and generate an output clock signal at a frequency determined using at least the frequency control word.
    Type: Application
    Filed: September 16, 2013
    Publication date: August 11, 2016
    Inventors: Josephus A. Van Engelen, Hairong Yu, Howard A. Baumer
  • Publication number: 20160191071
    Abstract: A system for calibrating time interleaved ADCs is disclosed and may include a time interleaved analog-to-digital converter (ADC) for converting analog signals to digital signals, the time interleaved ADC comprising: a plurality of active slices, and a plurality of reference slices, each reference slice associated with a corresponding one of the plurality of active slices. An output of each reference slice may be used to correct distortion in an output of the corresponding active slice. Each active slice may sample an input signal at a first rate and each associated reference slice may sample the input signal at a second rate, the second rate being slower than the first rate. Each sample taken by one of the plurality of reference slices may then be taken concurrent with a sample taken by the associated active slice. Each reference slice may include a reference sampling module and a dummy load.
    Type: Application
    Filed: September 18, 2015
    Publication date: June 30, 2016
    Inventors: Josephus Van Engelen, Aaron Buchwald, Ralph Duncan
  • Publication number: 20150280725
    Abstract: Systems and methods for converting analog signals to digital signals. A reference slice is associated with each of a plurality of active slices to balance the loading on an active sampling track and hold amplifier within each active slice. Alternatively, the reference slice is split into a portion having a reference ADC that is shared by a plurality of partial reference slices, each partial reference slice having a partial reference input module.
    Type: Application
    Filed: July 2, 2014
    Publication date: October 1, 2015
    Inventors: Josephus van Engelen, Aaron Buchwald, Ralph Duncan
  • Patent number: 9143149
    Abstract: Systems and methods for converting analog signals to digital signals. A reference slice is associated with each of a plurality of active slices to balance the loading on an active sampling track and hold amplifier within each active slice. Alternatively, the reference slice is split into a portion having a reference ADC that is shared by a plurality of partial reference slices, each partial reference slice having a partial reference input module.
    Type: Grant
    Filed: July 2, 2014
    Date of Patent: September 22, 2015
    Assignee: Entropic Communications, LLC.
    Inventors: Josephus van Engelen, Aaron Buchwald, Ralph Duncan
  • Patent number: 8907708
    Abstract: Systems and methods for generating a thermometer sigma delta encoded frequency control word for controlling a digitally controlled oscillator in accordance with embodiments of the invention are disclosed. In one embodiment, an all digital phase locked loop for generating an output clock signal includes a thermometer pulse coder configured to generate a frequency control word (FCW) that includes thermometer coded signals and a pulse modulated dither signal, and transmit the pulse modulated dither signal over a selected FCW signal line and transmit the thermometer coded signals over other FCW signal lines, and a digitally controlled oscillator to receive a FCW comprising a combined thermometer and pulse modulated signal and generate an output clock signal.
    Type: Grant
    Filed: September 16, 2013
    Date of Patent: December 9, 2014
    Assignee: Entropic Communications, Inc.
    Inventors: Josephus A. van Engelen, Hairong Yu, Howard A. Baumer
  • Patent number: 8798219
    Abstract: A high-speed serial data transceiver includes multiple receivers and transmitters for receiving and transmitting multiple analog, serial data signals at multi-gigabit-per-second data rates. Each receiver includes a timing recovery system for tracking a phase and a frequency of the serial data signal associated with the receiver. The timing recovery system includes a phase interpolator responsive to phase control signals and a set of reference signals having different predetermined phases. The phase interpolator derives a sampling signal, having an interpolated phase, to sample the serial data signal. The timing recovery system in each receiver independently phase-aligns and frequency synchronizes the sampling signal to the serial data signal associated with the receiver. A receiver can include multiple paths for sampling a received, serial data signal in accordance with multiple time-staggered sampling signals, each having an interpolated phase.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: August 5, 2014
    Assignee: Broadcom Corporation
    Inventors: Aaron W. Buchwald, Michael Le, Josephus van Engelen, Xicheng Jiang, Hui Wang, Howard A. Baumer, Avanindra Madisetti
  • Publication number: 20140084978
    Abstract: Systems and methods for generating a thermometer sigma delta encoded frequency control word for controlling a digitally controlled oscillator in accordance with embodiments of the invention are disclosed. In one embodiment, an all digital phase locked loop for generating an output clock signal includes a thermometer pulse coder configured to generate a frequency control word (FCW) that includes thermometer coded signals and a pulse modulated dither signal, and transmit the pulse modulated dither signal over a selected FCW signal line and transmit the thermometer coded signals over other FCW signal lines, and a digitally controlled oscillator to receive a FCW comprising a combined thermometer and pulse modulated signal and generate an output clock signal.
    Type: Application
    Filed: September 16, 2013
    Publication date: March 27, 2014
    Applicant: Entropic Communications, Inc.
    Inventors: Josephus A. van Engelen, Hairong Yu, Howard A. Baumer
  • Patent number: 8536916
    Abstract: Systems and methods for generating a thermometer sigma delta encoded frequency control word for controlling a digitally controlled oscillator in accordance with embodiments of the invention are disclosed. In one embodiment, an all digital phase locked loop for generating an output clock signal includes a thermometer pulse coder configured to generate a frequency control word (FCW) that includes thermometer coded signals and a pulse modulated dither signal, and transmit the pulse modulated dither signal over a selected FCW signal line and transmit the thermometer coded signals over other FCW signal lines, and a digitally controlled oscillator to receive a FCW comprising a combined thermometer and pulse modulated signal and generate an output clock signal.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: September 17, 2013
    Assignee: Entropic Communications, Inc.
    Inventors: Josephus A. van Engelen, Hairong Yu, Howard A. Baumer
  • Patent number: 8489151
    Abstract: A modular wireless headset having integrated but detachable elements is operable to service a cellular wireless terminal, streamed media or playback device. This modular wireless headset may include a wireless microphone and a wireless earpiece. The wireless earpiece may physically couple to the wireless microphone and a base unit in order to exchange information and share power resources. A power distribution controller allocates power between the wireless earpiece, wireless microphone, and base unit when physically coupled to operate or charge internal power supplies of the components.
    Type: Grant
    Filed: May 3, 2005
    Date of Patent: July 16, 2013
    Assignee: Broadcom Corporation
    Inventors: Josephus A. Van Engelen, Jeyhan Karaoguz, Nambirajan Seshadri, James D. Bennett
  • Patent number: 8433020
    Abstract: A high-speed serial data transceiver includes multiple receivers and transmitters for receiving and transmitting multiple analog, serial data signals at multi-gigabit-per-second data rates. Each receiver includes a timing recovery system for tracking a phase and a frequency of the serial data signal associated with the receiver. The timing recovery system includes a phase interpolator responsive to phase control signals and a set of reference signals having different predetermined phases. The phase interpolator derives a sampling signal, having an interpolated phase, to sample the serial data signal. The timing recovery system in each receiver independently phase-aligns and frequency synchronizes the sampling signal to the serial data signal associated with the receiver. A receiver can include multiple paths for sampling a received, serial data signal in accordance with multiple time-staggered sampling signals, each having an interpolated phase.
    Type: Grant
    Filed: June 5, 2006
    Date of Patent: April 30, 2013
    Assignee: Broadcom Corporation
    Inventors: Aaron W. Buchwald, Michael Le, Josephus Van Engelen, Xicheng Jiang, Hui Wang, Howard A. Baumer, Avanindra Madisetti
  • Patent number: 8321169
    Abstract: Aspects of a method and system for compensating temperature readings from a temperature sensing crystal integrated circuit are provided. An electronic device may digitize a temperature indication received from a temperature sensing circuit, digitize one or more calibration voltages received from said temperature sensing circuit, and calculate a compensated temperature indication utilizing the digitized calibration voltage(s), and the digitized temperature indication, and data from a table that characterizes behavior of the temperature sensing circuit as a function of temperature. One or more circuits in the electronic device may be controlled based on the compensated temperature indication. The compensated temperature indication may compensate for a gain error and/or offset error of a digital to analog converter that digitizes the temperature indication and the calibration voltage(s). There may be two calibration voltages.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: November 27, 2012
    Assignee: Broadcom Corporation
    Inventors: Todd Brooks, Vinay Chandrasekhar, Josephus Van Engelen, Jared Welz
  • Patent number: 8201995
    Abstract: Aspects of a method and system for a temperature sensing crystal Integrated circuit with digital temperature output are provided. In this regard, an indication of temperature may be generated in an integrated circuit (IC) comprising a memory, a crystal or crystal oscillator, and at least a portion of an analog-to-digital converter. The temperature indication may be digitized via the analog-to-digital converter. Operation of one or more circuits may be controlled based on the digital temperature indication. The digital temperature indication may be communicated over a communication bus. An analog portion of the analog-to-digital converter may be integrated in the IC and may comprise, for example, a delta-sigma modulator. A digital portion of the analog-to-digital converter may be external to the IC and may comprise, for example, a digital filter.
    Type: Grant
    Filed: February 2, 2009
    Date of Patent: June 19, 2012
    Assignee: Broadcom Corporation
    Inventors: Evan McCarthy, John Walley, Todd L Brooks, Vinay Chandrasekhar, Josephus Van Engelen, Jared Welz
  • Patent number: 8018363
    Abstract: In a high-fidelity digital modulator, a mapper is provided to minimize quantization noise, jitter, and cross-talk between multiple digital-to-analog or analog-to-digital converters. The mapper receives a quantized level from a quantizer and maps the quantized level to an output sequence. The mapper includes a table defining multiple sequences corresponding to each quantized level. Each sequence includes two or more symbols, having one of multiple values. The mapper also includes a generator that selects one of the multiple sequences as the output sequence. The last symbol of a first output sequence is equal to the first symbol of the next output sequence and so on. The generator selects the output sequence by alternating between a first and a second sequence for each quantized level received. The generator selects the output sequence by alternating between sequences having a positive and a negative common mode energy for each odd valued quantized level received.
    Type: Grant
    Filed: September 10, 2009
    Date of Patent: September 13, 2011
    Assignee: Broadcom Corporation
    Inventors: Todd L. Brooks, Kevin L. Miller, Josephus A. Van Engelen
  • Publication number: 20110184686
    Abstract: Aspects of a method and system for compensating temperature readings from a temperature sensing crystal integrated circuit are provided. An electronic device may digitize a temperature indication received from a temperature sensing circuit, digitize one or more calibration voltages received from said temperature sensing circuit, and calculate a compensated temperature indication utilizing the digitized calibration voltage(s), and the digitized temperature indication, and data from a table that characterizes behavior of the temperature sensing circuit as a function of temperature. One or more circuits in the electronic device may be controlled based on the compensated temperature indication. The compensated temperature indication may compensate for a gain error and/or offset error of a digital to analog converter that digitizes the temperature indication and the calibration voltage(s). There may be two calibration voltages.
    Type: Application
    Filed: April 12, 2011
    Publication date: July 28, 2011
    Inventors: Todd Brooks, Vinay Chandrasekhar, Josephus Van Engelen, Jared Welz
  • Patent number: 7925463
    Abstract: Aspects of a method and system for compensating temperature readings from a temperature sensing crystal integrated circuit are provided. In this regard, a temperature indication and calibration voltages from a temperature sensing crystal integrated circuit (TSCIC) may be digitized and the digital signals may be utilized to calculate a compensated temperature indication. Data derived from a memory integrated within the TSCIC may be retrieved based on the compensated temperature indication. The retrieved data may be utilized to control operation of one or more circuits. The compensated temperature indication may be calculated by removing a gain error and/or offset error from the digitized temperature indication. The compensated temperature indication may be utilized as an index for a data table. The compensated temperature indication may be a normalized compensated temperature indication. The calibration voltages may include a minimum voltage and/or a maximum voltage that the TSCIC is operable to output.
    Type: Grant
    Filed: February 2, 2009
    Date of Patent: April 12, 2011
    Assignee: Broadcom Corporation
    Inventors: Todd Brooks, Vinay Chandrasekhar, Josephus Van Engelen, Jared Welz