Patents by Inventor Josh ENGELHARDT

Josh ENGELHARDT has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10825945
    Abstract: What is proposed is a method of producing at least two differently heavily doped subzones (3, 5) predominantly doped with a first dopant type in a silicon substrate (1), in particular for a solar cell. The method comprises: covering at least a first subzone (3) of the silicon substrate (1) in which a heavier doping with the first dopant type is to be produced with a doping layer (7) of borosilicate glass, wherein at least a second subzone (5) of the silicon substrate (1) in which a lighter doping with the first dopant type is to be produced is not covered with the doping layer (7), and wherein boron as a dopant of a second dopant type differing from the first dopant type and oppositely polarized with respect to the same is included in the layer (7), and; heating the such prepared silicon substrate (1) to temperatures above 300° C., preferably above 900° C., in a furnace in an atmosphere containing significant quantities of the first dopant type.
    Type: Grant
    Filed: June 29, 2015
    Date of Patent: November 3, 2020
    Assignee: UNIVERSITÄT KONSTANZ
    Inventors: Sebastian Gloger, Barbara Terheiden, Daniel Sommer, Axel Herguth, Josh Engelhardt
  • Patent number: 9923116
    Abstract: A method for producing a solar cell is described, in which a plurality of doped regions are to be etched-back selectively or over their entire surface. Once a semiconductor substrate (1) has been provided, various doped regions (3, 5) are formed in partial regions of a surface of the semiconductor substrate, the various doped regions (3, 5) differing as regards their doping concentration and/or their doping polarity. The various doped regions (3, 5) are then purposively etched-back in order to achieve desired doping profiles, and finally electrical contacts (21) are formed at least at some of the doped regions (3, 5). The etching-back of the various doped regions takes place in a common etching operation in an etching medium.
    Type: Grant
    Filed: March 11, 2015
    Date of Patent: March 20, 2018
    Assignee: UNIVERSITÄT KONSTANZ
    Inventors: Josh Engelhardt, Alexander Frey, Yvonne Schiele, Barbara Terheiden
  • Publication number: 20170133538
    Abstract: What is proposed is a method of producing at least two differently heavily doped subzones (3, 5) predominantly doped with a first dopant type in a silicon substrate (1), in particular for a solar cell. The method comprises: covering at least a first subzone (3) of the silicon substrate (1) in which a heavier doping with the first dopant type is to be produced with a doping layer (7) of borosilicate glass, wherein at least a second subzone (5) of the silicon substrate (1) in which a lighter doping with the first dopant type is to be produced is not covered with the doping layer (7), and wherein boron as a dopant of a second dopant type differing from the first dopant type and oppositely polarized with respect to the same is included in the layer (7), and; heating the such prepared silicon substrate (1) to temperatures above 300° C., preferably above 900° C., in a furnace in an atmosphere containing significant quantities of the first dopant type.
    Type: Application
    Filed: June 29, 2015
    Publication date: May 11, 2017
    Inventors: Sebastian GLOGER, Barbara TERHEIDEN, Daniel SOMMER, Axel HERGUTH, Josh ENGELHARDT
  • Publication number: 20170018676
    Abstract: A method for producing a solar cell is described, in which a plurality of doped regions are to be etched-back selectively or over their entire surface. Once a semiconductor substrate (1) has been provided, various doped regions (3, 5) are formed in partial regions of a surface of the semiconductor substrate, the various doped regions (3, 5) differing as regards their doping concentration and/or their doping polarity. The various doped regions (3, 5) are then purposively etched-back in order to achieve desired doping profiles, and finally electrical contacts (21) are formed at least at some of the doped regions (3, 5). The etching-back of the various doped regions takes place in a common etching operation in an etching medium.
    Type: Application
    Filed: March 11, 2015
    Publication date: January 19, 2017
    Applicant: UNIVERSITÄT KONSTANZ
    Inventors: Josh ENGELHARDT, Alexander FREY, Yvone SCHIELE, Barbara TERHEIDEN