Patents by Inventor Joshua Armstrong

Joshua Armstrong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240159155
    Abstract: A tie for a component includes a body including an elongate portion and an arch disposed adjacent to the elongate portion. The arch includes first and second middle surfaces extending between a pair of first and second outer curved surfaces, respectively. The body defines a minimum cross-sectional plane perpendicular to a longitudinal axis and passing through the elongate portion. The body further includes a minimum tie width at the minimum cross-sectional plane along a second transverse axis. The minimum tie width is greater than each of a first minimum arch width of the first middle surface and a second minimum arch width of the second middle surface by a width factor greater than or equal to 3 to less than or equal to 10.
    Type: Application
    Filed: October 27, 2023
    Publication date: May 16, 2024
    Applicant: ROLLS-ROYCE plc
    Inventors: Joshua ARMSTRONG, Dann CASCANO, Jaideep Y. THAR, Sophie HARRISON
  • Patent number: 11865577
    Abstract: An anticorrosive coating includes a first curable liquid layer to the associated substrate, the first layer having a thickness of at least about 100 micrometers, wherein the first layer includes at least one polymer or at least one monomer, quasi-one-dimensional particles or quasi-two-dimensional particles, sacrificial metal particles, and a solvent, wherein a percolation threshold of the particles is not reached in the presence of the solvent, wherein the percolation threshold of the particles is reached when between about 1% and about 20% of the solvent evaporates, applying a second curable liquid layer having a thickness of at least 100 micrometers on the top of the first layer after the percolation threshold of the particles is reached and viscosity of the first layer increases more than 50%, and allowing the first layer and the second layer to cure simultaneously.
    Type: Grant
    Filed: October 22, 2020
    Date of Patent: January 9, 2024
    Inventors: Jorma Virtanen, Joshua Armstrong, Todd Hawkins
  • Publication number: 20220297155
    Abstract: An anticorrosive coating includes a first curable liquid layer to the associated substrate, the first layer having a thickness of at least about 100 micrometers, wherein the first layer includes at least one polymer or at least one monomer, quasi-one-dimensional particles or quasi-two-dimensional particles, sacrificial metal particles, and a solvent, wherein a percolation threshold of the particles is not reached in the presence of the solvent, wherein the percolation threshold of the particles is reached when between about 1% and about 20% of the solvent evaporates, applying a second curable liquid layer having a thickness of at least 100 micrometers on the top of the first layer after the percolation threshold of the particles is reached and viscosity of the first layer increases more than 50%, and allowing the first layer and the second layer to cure simultaneously.
    Type: Application
    Filed: June 7, 2022
    Publication date: September 22, 2022
    Inventors: Jorma VIRTANEN, Joshua ARMSTRONG, Todd HAWKINS
  • Patent number: 11351571
    Abstract: An anticorrosive coating includes a first curable liquid layer to the associated substrate, the first layer having a thickness of at least about 100 micrometers, wherein the first layer includes at least one polymer or at least one monomer, quasi-one-dimensional particles or quasi-two-dimensional particles, sacrificial metal particles, and a solvent, wherein a percolation threshold of the particles is not reached in the presence of the solvent, wherein the percolation threshold of the particles is reached when between about 1% and about 20% of the solvent evaporates, applying a second curable liquid layer having a thickness of at least 100 micrometers on the top of the first layer after the percolation threshold of the particles is reached and viscosity of the first layer increases more than 50%, and allowing the first layer and the second layer to cure simultaneously.
    Type: Grant
    Filed: May 10, 2021
    Date of Patent: June 7, 2022
    Assignee: TESLA NANOCOATINGS, INC.
    Inventors: Jorma Virtanen, Joshua Armstrong, Todd Hawkins
  • Publication number: 20210283654
    Abstract: An anticorrosive coating includes a first curable liquid layer to the associated substrate, the first layer having a thickness of at least about 100 micrometers, wherein the first layer includes at least one polymer or at least one monomer, quasi-one-dimensional particles or quasi-two-dimensional particles, sacrificial metal particles, and a solvent, wherein a percolation threshold of the particles is not reached in the presence of the solvent, wherein the percolation threshold of the particles is reached when between about 1% and about 20% of the solvent evaporates, applying a second curable liquid layer having a thickness of at least 100 micrometers on the top of the first layer after the percolation threshold of the particles is reached and viscosity of the first layer increases more than 50%, and allowing the first layer and the second layer to cure simultaneously.
    Type: Application
    Filed: May 10, 2021
    Publication date: September 16, 2021
    Inventors: JORMA VIRTANEN, JOSHUA ARMSTRONG, TODD HAWKINS
  • Publication number: 20210283653
    Abstract: An anticorrosive coating includes a first curable liquid layer to the associated substrate, the first layer having a thickness of at least about 100 micrometers, wherein the first layer includes at least one polymer or at least one monomer, quasi-one-dimensional particles or quasi-two-dimensional particles, sacrificial metal particles, and a solvent, wherein a percolation threshold of the particles is not reached in the presence of the solvent, wherein the percolation threshold of the particles is reached when between about 1% and about 20% of the solvent evaporates, applying a second curable liquid layer having a thickness of at least 100 micrometers on the top of the first layer after the percolation threshold of the particles is reached and viscosity of the first layer increases more than 50%, and allowing the first layer and the second layer to cure simultaneously.
    Type: Application
    Filed: October 22, 2020
    Publication date: September 16, 2021
    Inventors: JORMA VIRTANEN, JOSHUA ARMSTRONG, TODD HAWKINS
  • Publication number: 20210283652
    Abstract: An anticorrosive coating includes a first curable liquid layer to the associated substrate, the first layer having a thickness of at least about 100 micrometers, wherein the first layer includes at least one polymer or at least one monomer, quasi-one-dimensional particles or quasi-two-dimensional particles, sacrificial metal particles, and a solvent, wherein a percolation threshold of the particles is not reached in the presence of the solvent, wherein the percolation threshold of the particles is reached when between about 1% and about 20% of the solvent evaporates, applying a second curable liquid layer having a thickness of at least 100 micrometers on the top of the first layer after the percolation threshold of the particles is reached and viscosity of the first layer increases more than 50%, and allowing the first layer and the second layer to cure simultaneously.
    Type: Application
    Filed: October 22, 2020
    Publication date: September 16, 2021
    Inventors: JORMA VIRTANEN, JOSHUA ARMSTRONG, TODD HAWKINS
  • Patent number: 11090687
    Abstract: A method of providing an anticorrosive coating includes applying a first curable liquid layer to the associated substrate, the first layer having a thickness of at least about 100 micrometers, wherein the first layer includes at least one polymer or at least one monomer, quasi-one-dimensional particles or quasi-two-dimensional particles, sacrificial metal particles, and a solvent, wherein a percolation threshold of the particles is not reached in the presence of the solvent, wherein the percolation threshold of the particles is reached when between about 1% and about 20% of the solvent evaporates, applying a second curable liquid layer having a thickness of at least 100 micrometers on the top of the first layer after the percolation threshold of the particles is reached and viscosity of the first layer increases more than 50%, and allowing the first layer and the second layer to cure simultaneously.
    Type: Grant
    Filed: March 10, 2020
    Date of Patent: August 17, 2021
    Assignee: Tesla Nanocoatings, Inc.
    Inventors: Jorma Virtanen, Joshua Armstrong, Todd Hawkins
  • Patent number: 7855164
    Abstract: The invention provides methods and compositions for identifying compounds that can enhance plant resistance to stress.
    Type: Grant
    Filed: February 17, 2006
    Date of Patent: December 21, 2010
    Assignee: Mendel Biotechnology, Inc.
    Inventors: Teresa Lynne Reuber, Karen Century, Joshua Armstrong