Patents by Inventor Joshua C. Falkner

Joshua C. Falkner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10167392
    Abstract: In a composition including a plurality of coated diamond nanoparticles, each diamond nanoparticle may have at least one silane functional group covalently bonded to a surface thereof. A method of forming coated diamond nanoparticles may include functionalizing surfaces of diamond nanoparticles with at least one of a fluorine-containing compound and an oxidant; dispersing the functionalized diamond nanoparticles in a solvent comprising a silane functional group; and forming covalent bonds between the silane functional group and the diamond nanoparticles. A method of forming a diamond coating may include depositing the diamond nanoparticles over a substrate.
    Type: Grant
    Filed: October 31, 2014
    Date of Patent: January 1, 2019
    Assignee: Baker Hughes Incorporated
    Inventors: Radhika Suresh, Joshua C. Falkner, Valery N. Khabashesku, Othon R. Monteiro, Devesh K. Agrawal
  • Patent number: 9488030
    Abstract: A pressure compensation system for enclosed spaces at a subterranean location changes volume with thermally induced solubility changes of a salt in water. The salt is held in an enclosure that is either rigid, or impervious and flexible or porous and flexible. As well conditions change and temperature increases, some of the salt goes into solution with a resulting decrease in volume that compensates for thermally induced volume increase due to temperature increase in the borehole. Conversely, a decrease in borehole temperature brings some of the salt out of solution for a volume increase to offset the volume decrease of the adjacent fluid to keep the pressure stabilized in the enclosed volume. In the porous enclosure embodiment the openings are sufficiently small to retain the salt even in solution. However, minimal net flows are anticipated for pressure compensation due to changing thermal effects.
    Type: Grant
    Filed: October 25, 2013
    Date of Patent: November 8, 2016
    Assignee: Baker Hughes Incorporated
    Inventors: Edward T. Wood, David P. Gerrard, Joshua C. Falkner, Ramon R. Garza
  • Patent number: 9488027
    Abstract: A downhole composite component is disclosed. The downhole composite component includes a tubular member, the tubular member comprising a fiber reinforced polymer matrix composite. The fiber reinforced polymer matrix composite includes a polymer matrix, the polymer matrix having an unfilled matrix compressive modulus of elasticity. The polymer matrix also includes a nanoparticle filler comprising a plurality of nanoparticles dispersed within the polymer matrix, the polymer matrix and dispersed nanoparticle filler having a filled matrix compressive modulus of elasticity, the filled matrix compressive modulus of elasticity being greater than the unfilled matrix compressive modulus of elasticity.
    Type: Grant
    Filed: February 10, 2012
    Date of Patent: November 8, 2016
    Assignee: BAKER HUGHES INCORPORATED
    Inventors: Randall V. Guest, Soma Chakraborty, Joshua C. Falkner
  • Publication number: 20160122551
    Abstract: In a composition including a plurality of coated diamond nanoparticles, each diamond nanoparticle may have at least one silane functional group covalently bonded to a surface thereof. A method of forming coated diamond nanoparticles may include functionalizing surfaces of diamond nanoparticles with at least one of a fluorine-containing compound and an oxidant; dispersing the functionalized diamond nanoparticles in a solvent comprising a silane functional group; and forming covalent bonds between the silane functional group and the diamond nanoparticles. A method of forming a diamond coating may include depositing the diamond nanoparticles over a substrate.
    Type: Application
    Filed: October 31, 2014
    Publication date: May 5, 2016
    Inventors: Radhika Suresh, Joshua C. Falkner, Valery N. Khabashesku, Othon R. Monteiro, Devesh Kumar Agrawal
  • Patent number: 9150771
    Abstract: In an embodiment is a seal including an elastomer; and boron nitride nanoparticles disposed in the elastomer, wherein the seal is thermally conductive and electrically insulating. In another embodiment, is a method of making a seal, the method includes compounding an elastomer with boron nitride nanoparticles to provide a composition; and molding the composition into a shape.
    Type: Grant
    Filed: July 31, 2014
    Date of Patent: October 6, 2015
    Assignee: Baker Hughes Incorporated
    Inventors: Oleg A. Mazyar, Ashley D. Leonard, Joshua C. Falkner
  • Publication number: 20150114621
    Abstract: A pressure compensation system for enclosed spaces at a subterranean location changes volume with thermally induced solubility changes of a salt in water. The salt is held in an enclosure that is either rigid, or impervious and flexible or porous and flexible. As well conditions change and temperature increases, some of the salt goes into solution with a resulting decrease in volume that compensates for thermally induced volume increase due to temperature increase in the borehole. Conversely, a decrease in borehole temperature brings some of the salt out of solution for a volume increase to offset the volume decrease of the adjacent fluid to keep the pressure stabilized in the enclosed volume. In the porous enclosure embodiment the openings are sufficiently small to retain the salt even in solution. However, minimal net flows are anticipated for pressure compensation due to changing thermal effects.
    Type: Application
    Filed: October 25, 2013
    Publication date: April 30, 2015
    Applicant: Baker Hughes Incorporated
    Inventors: Edward T. Wood, David P. Gerrard, Joshua C. Falkner, Ramon R. Garza
  • Publication number: 20140339780
    Abstract: In an embodiment is a seal including an elastomer; and boron nitride nanoparticles disposed in the elastomer, wherein the seal is thermally conductive and electrically insulating. In another embodiment, is a method of making a seal, the method includes compounding an elastomer with boron nitride nanoparticles to provide a composition; and molding the composition into a shape.
    Type: Application
    Filed: July 31, 2014
    Publication date: November 20, 2014
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Oleg A. Mazyar, Ashley D. Leonard, Joshua C. Falkner
  • Patent number: 8840803
    Abstract: A nanocomposite fluid includes a fluid medium; and a nanoparticle composition comprising nanoparticles which are electrically insulating and thermally conductive. A method of making the nanocomposite fluid includes forming boron nitride nanoparticles; dispersing the boron nitride nanoparticles in a solvent; combining the boron nitride nanoparticles and a fluid medium; and removing the solvent.
    Type: Grant
    Filed: February 2, 2012
    Date of Patent: September 23, 2014
    Assignee: Baker Hughes Incorporated
    Inventors: Oleg A. Mazyar, Ashley Leonard, Joshua C. Falkner
  • Publication number: 20140020910
    Abstract: An in situ method deploy and/or plasticize a shape-memory material in order to change the material's physical dimensions and/or mechanical properties, including a method for deploying a shape-memory polymer having a deformed or compressed shape in an environment at a first temperature, the shape memory polymer having a first glass transition temperature which is greater than the first temperature. The method also includes decreasing the glass transition temperature of shape memory polymer from the first glass transition temperature to a second glass transition temperature which is less than or equal to the first temperature; and expanding the shape memory polymer to deploy the shape memory polymer in a deployed shape.
    Type: Application
    Filed: September 20, 2013
    Publication date: January 23, 2014
    Applicant: Baker Hughes Incorporated
    Inventors: JOSHUA C. FALKNER, Bairu Liu, Chau Vu, Ramon R. Garza, John C. Welch, Vu Thieu, Anil K. Sadana
  • Publication number: 20140018475
    Abstract: A process for preparing a nanocomposite includes combining a resin and silsesquioxane; introducing a curing agent to the resin and silsesquioxane to form a composition; and forming a reaction product of the composition to prepare the nanocomposite, wherein a total amount of the silsesquioxane and curing agent in the composition is from 1 wt % to 70 wt %, based on a weight of the composition. Additionally, a process for preparing an article includes combining an epoxy resin and silsesquioxane; introducing a curing agent to the epoxy resin and silsesquioxane to form a composition; and reacting the epoxy resin, silsesquioxane, and curing agent to form the nanocomposite, wherein a molar ratio of a number of moles of an epoxy functional group of the epoxy resin to the sum of the number of moles of the silsesquioxane and curing agent is from 1:1 to 100:1. An article includes the reaction product of the resin, silsesquioxane, and curing agent.
    Type: Application
    Filed: July 16, 2012
    Publication date: January 16, 2014
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Joshua C. Falkner, Soma Chakraborty, Radhika Suresh
  • Publication number: 20130206273
    Abstract: A downhole composite component is disclosed. The downhole composite component includes a tubular member, the tubular member comprising a fiber reinforced polymer matrix composite. The fiber reinforced polymer matrix composite includes a polymer matrix, the polymer matrix having an unfilled matrix compressive modulus of elasticity. The polymer matrix also includes a nanoparticle filler comprising a plurality of nanoparticles dispersed within the polymer matrix, the polymer matrix and dispersed nanoparticle filler having a filled matrix compressive modulus of elasticity, the filled matrix compressive modulus of elasticity being greater than the unfilled matrix compressive modulus of elasticity.
    Type: Application
    Filed: February 10, 2012
    Publication date: August 15, 2013
    Inventors: Randall V. Guest, Soma Chakraborty, Joshua C. Falkner
  • Publication number: 20130200299
    Abstract: A nanocomposite fluid includes a fluid medium; and a nanoparticle composition comprising nanoparticles which are electrically insulating and thermally conductive. A method of making the nanocomposite fluid includes forming boron nitride nanoparticles; dispersing the boron nitride nanoparticles in a solvent; combining the boron nitride nanoparticles and a fluid medium; and removing the solvent.
    Type: Application
    Filed: February 2, 2012
    Publication date: August 8, 2013
    Applicant: Baker Hughes Incorporated
    Inventors: Oleg A. Mazyar, Ashley Leonard, Joshua C. Falkner