Patents by Inventor Joshua Clifford Bedford

Joshua Clifford Bedford has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9976464
    Abstract: An after-treatment (AT) system for an exhaust gas flow from an internal combustion engine includes first and second AT devices positioned in the exhaust gas flow. The AT system also includes an exhaust passage for carrying the flow of exhaust gas from the first AT device to the second AT device. The AT system additionally includes an injector configured to generate a reductant spray into the exhaust passage and a sensor positioned proximate the injector for detecting a concentration of a pollutant in the exhaust gas flow downstream of the first AT device. The AT system furthermore includes a deflector arranged between the injector and the sensor and configured to guide the flow of exhaust gas to the sensor to thereby concentrate the flow of exhaust gas at the sensor and direct the reductant spray away from the sensor to thereby minimize detection of the reductant by the sensor.
    Type: Grant
    Filed: November 8, 2016
    Date of Patent: May 22, 2018
    Assignee: GM Global Technology Operations LLC
    Inventors: Claudio Ciaravino, Joshua Clifford Bedford, Andrea Arnone
  • Publication number: 20180128146
    Abstract: An after-treatment (AT) system for an exhaust gas flow from an internal combustion engine includes first and second AT devices positioned in the exhaust gas flow. The AT system also includes an exhaust passage for carrying the flow of exhaust gas from the first AT device to the second AT device. The AT system additionally includes an injector configured to generate a reductant spray into the exhaust passage and a sensor positioned proximate the injector for detecting a concentration of a pollutant in the exhaust gas flow downstream of the first AT device. The AT system furthermore includes a deflector arranged between the injector and the sensor and configured to guide the flow of exhaust gas to the sensor to thereby concentrate the flow of exhaust gas at the sensor and direct the reductant spray away from the sensor to thereby minimize detection of the reductant by the sensor.
    Type: Application
    Filed: November 8, 2016
    Publication date: May 10, 2018
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Claudio Ciaravino, Joshua Clifford Bedford, Andrea Arnone
  • Patent number: 9771851
    Abstract: An internal combustion engine fluidly coupled to an exhaust aftertreatment system includes a particulate filter device, a first selective catalytic reduction device disposed upstream relative to a second selective catalytic reduction device, and an injection system disposed to inject a reductant into the exhaust gas feedstream upstream relative to the first selective catalytic reduction device. A method for controlling the internal combustion engine includes monitoring engine operation, and determining an amount of particulate matter stored on the particulate filter based thereon. An amount of reductant stored on the second selective catalytic reduction device and operating conditions associated with the exhaust aftertreatment system are also determined.
    Type: Grant
    Filed: February 11, 2016
    Date of Patent: September 26, 2017
    Assignee: GM Global Technology Operations LLC
    Inventors: Min Sun, Shifang Li, Giuseppe Mazzara Bologna, Joshua Clifford Bedford
  • Publication number: 20170234199
    Abstract: An internal combustion engine fluidly coupled to an exhaust aftertreatment system includes a particulate filter device, a first selective catalytic reduction device disposed upstream relative to a second selective catalytic reduction device, and an injection system disposed to inject a reductant into the exhaust gas feedstream upstream relative to the first selective catalytic reduction device. A method for controlling the internal combustion engine includes monitoring engine operation, and determining an amount of particulate matter stored on the particulate filter based thereon. An amount of reductant stored on the second selective catalytic reduction device and operating conditions associated with the exhaust aftertreatment system are also determined.
    Type: Application
    Filed: February 11, 2016
    Publication date: August 17, 2017
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Min Sun, Shifang Li, Giuseppe Mazzara Bologna, Joshua Clifford Bedford
  • Patent number: 9689331
    Abstract: An internal combustion engine is coupled to an oxidation catalyst disposed upstream of a second catalytic device. A controller includes an instruction set executable to detect a cold start engine starting event, monitor first and second temperature sensors, control each of the fuel injectors to execute a first set of fuel injection events for each cylinder event in response to an output torque request, and execute a second set of fuel injection events for each cylinder event after cylinder top-dead-center. The second set of fuel injection events includes a final injection event, and a duration of the final injection event is determined based upon the first and second temperatures.
    Type: Grant
    Filed: March 24, 2016
    Date of Patent: June 27, 2017
    Assignee: GM Global Technology Operations LLC
    Inventors: Jean-Yves Lavallee, Joshua Clifford Bedford, Giuseppe Mazzara Bologna, Charles E. Solbrig
  • Patent number: 9689290
    Abstract: An after-treatment (AT) system for a flow of exhaust gas of an internal combustion engine includes a first AT device and a second AT device in fluid communication with and positioned in the exhaust gas flow downstream of the first AT device. The AT system also includes an exhaust passage configured to carry the exhaust gas flow from the first AT device to the second AT device. The AT system additionally includes an injector configured to introduce a reductant into the exhaust passage. The second AT device includes an inlet cone having a volute defining a spiral primary path for the exhaust gas flow into the second AT device and configured to generate a swirling motion of and turbulence in the exhaust gas flow. A vehicle employing the AT system is also disclosed.
    Type: Grant
    Filed: December 1, 2015
    Date of Patent: June 27, 2017
    Assignee: GM Global Technology Operations LLC
    Inventors: Jianwen Li, Luciano Nunziato Di Perna, Rahul Mital, Roberto Argolini, Joshua Clifford Bedford
  • Publication number: 20170152778
    Abstract: An after-treatment (AT) system for a flow of exhaust gas of an internal combustion engine includes a first AT device and a second AT device in fluid communication with and positioned in the exhaust gas flow downstream of the first AT device. The AT system also includes an exhaust passage configured to carry the exhaust gas flow from the first AT device to the second AT device. The AT system additionally includes an injector configured to introduce a reductant into the exhaust passage. The second AT device includes an inlet cone having a volute defining a spiral primary path for the exhaust gas flow into the second AT device and configured to generate a swirling motion of and turbulence in the exhaust gas flow. A vehicle employing the AT system is also disclosed.
    Type: Application
    Filed: December 1, 2015
    Publication date: June 1, 2017
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Jianwen Li, Luciano Nunziato Di Perna, Rahul Mital, Roberto Argolini, Joshua Clifford Bedford
  • Patent number: 9291084
    Abstract: A vehicle and a method of updating efficiency of a selective catalytic reduction filter (SCRF) of an exhaust treatment system of the vehicle are disclosed. The method includes obtaining an initial calculated efficiency of the SCRF, via a controller, regarding one of a NOx conversion, a reductant absorption, a reductant desorption and a reductant oxidation. The method also includes determining a soot mass estimate in the SCRF representative of an amount of soot collected inside the SCRF and determining a soot correction factor from the soot mass estimate. The method further includes calculating, via the controller, an updated efficiency value of the SCRF by multiplying the soot correction factor and the initial calculated efficiency to update efficiency of the SCRF.
    Type: Grant
    Filed: August 15, 2013
    Date of Patent: March 22, 2016
    Assignee: GM Global Technology Operations LLC
    Inventors: Thomas Larose, Jr., Christopher C. Swoish, Christopher Whitt, Joshua Clifford Bedford
  • Patent number: 9228467
    Abstract: A urea injection controller for a motorized system includes a passive regeneration model configured and disposed to calculate an amount of NOx conversion resulting from an interaction between exhaust gases and soot entrained in a selective catalyst reduction filter (SCRF) device, a replenishment mode trigger module configured to set an ammonia replenishment request based on the passive regeneration model, and a replenishment control module configured to selectively activate a urea injector to discharge a particular amount of urea based on the regeneration model.
    Type: Grant
    Filed: September 10, 2013
    Date of Patent: January 5, 2016
    Assignee: GM Global Technology Operations LLC
    Inventors: Christopher C. Swoish, Thomas Larose, Jr., Christopher Whitt, Joshua Clifford Bedford
  • Patent number: 9149801
    Abstract: A system and method for adapting the clean filter correction map for a selective catalyst reduction filter SCRF of an exhaust gas aftertreatment system are provided. The system may be in fluid communication with an engine of a vehicle. The system may include a first pressure sensor and a second pressure. A differential pressure module is in communication with the first pressure sensor and the second pressure sensor and configured to generate a delta pressure signal corresponding to a pressure drop between the first pressure sensor and the second pressure sensor. The system may also include a controller configured to determine a number of completed regeneration events of the SCRF; compare the number of completed regeneration events to an evaluation element; and enable an adaptation module by executing one of a first control action, a second control action, and a third control action.
    Type: Grant
    Filed: June 17, 2013
    Date of Patent: October 6, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Christopher Whitt, Thomas Larose, Jr., Christopher C. Swoish, Joshua Clifford Bedford
  • Patent number: 9003773
    Abstract: A vehicle and method of updating aging of a selective catalytic reduction filter (SCRF) of an exhaust treatment system of the vehicle are disclosed. The method includes determining a desorption rate estimate of a catalyst of the SCRF and determining an ash volume estimate representative of an amount of ash collected inside the SCRF. The method also includes determining an ash correction factor from the ash volume estimate and calculating, via a controller, a corrected desorption rate value by multiplying the ash correction factor with the desorption rate estimate to update the aging of the SCRF.
    Type: Grant
    Filed: August 15, 2013
    Date of Patent: April 14, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Thomas Larose, Jr., Christopher Whitt, Christopher C. Swoish, Joshua Clifford Bedford
  • Patent number: 9003792
    Abstract: In an exemplary embodiment, an internal combustion engine includes an oxidation catalyst configured to receive an exhaust gas flow from the internal combustion engine, a urea injector positioned downstream of the oxidation catalyst to inject a urea flow into the exhaust gas flow and a mixer positioned downstream of the urea injector to mix the exhaust gas flow and the urea flow to form a mixed exhaust gas and urea flow. The engine also includes a particulate filter and catalytic reduction assembly positioned downstream of the mixer to receive the mixed exhaust and urea flow from the mixer to form a treated exhaust gas flow and an exhaust gas recirculation system coupled to the particulate filter to receive a portion of the treated exhaust gas flow and recirculate the portion of the exhaust gas flow to be mixed with a fresh air flow for the internal combustion engine.
    Type: Grant
    Filed: April 5, 2012
    Date of Patent: April 14, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Manuel Angel Gonzalez Delgado, Julian C. Tan, Joshua Clifford Bedford, Yong Miao, Naser I. Hineiti, Steven M. Yocum
  • Patent number: 8991155
    Abstract: A vehicle and a method of determining a reductant storage capacity set point of a selective catalytic reduction filter (SCRF) of an exhaust treatment system of a vehicle are disclosed. The method includes determining a storage estimate of a reductant inside the SCRF and determining a particulate estimate in the SCRF representative of an amount of particulate matter collected inside the SCRF. The method also includes determining a particulate correction factor from the particulate estimate and calculating, via a controller, a set point value of the reductant in the SCRF by computing together the particulate correction factor and the storage estimate to determine the reductant storage capacity set point of the SCRF.
    Type: Grant
    Filed: August 15, 2013
    Date of Patent: March 31, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Thomas Larose, Jr., Christopher Whitt, Christopher C. Swoish, Joshua Clifford Bedford
  • Publication number: 20150068197
    Abstract: A urea injection controller for a motorized system includes a passive regeneration model configured and disposed to calculate an amount of NOx conversion resulting from an interaction between exhaust gases and soot entrained in a selective catalyst reduction filter (SCRF) device, a replenishment mode trigger module configured to set an ammonia replenishment request based on the passive regeneration model, and a replenishment control module configured to selectively activate a urea injector to discharge a particular amount of urea based on the regeneration model.
    Type: Application
    Filed: September 10, 2013
    Publication date: March 12, 2015
    Applicant: GM Global Technology Operations LLC
    Inventors: Christopher C. Swoish, Thomas Larose, JR., Christopher Whitt, Joshua Clifford Bedford
  • Publication number: 20150047328
    Abstract: A vehicle and a method of updating efficiency of a selective catalytic reduction filter (SCRF) of an exhaust treatment system of the vehicle are disclosed. The method includes obtaining an initial calculated efficiency of the SCRF, via a controller, regarding one of a NOx conversion, a reductant absorption, a reductant desorption and a reductant oxidation. The method also includes determining a soot mass estimate in the SCRF representative of an amount of soot collected inside the SCRF and determining a soot correction factor from the soot mass estimate. The method further includes calculating, via the controller, an updated efficiency value of the SCRF by multiplying the soot correction factor and the initial calculated efficiency to update efficiency of the SCRF.
    Type: Application
    Filed: August 15, 2013
    Publication date: February 19, 2015
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Thomas Larose, JR., Christopher C. Swoish, Christopher Whitt, Joshua Clifford Bedford
  • Publication number: 20150047319
    Abstract: A vehicle and a method of determining a reductant storage capacity set point of a selective catalytic reduction filter (SCRF) of an exhaust treatment system of a vehicle are disclosed. The method includes determining a storage estimate of a reductant inside the SCRF and determining a particulate estimate in the SCRF representative of an amount of particulate matter collected inside the SCRF. The method also includes determining a particulate correction factor from the particulate estimate and calculating, via a controller, a set point value of the reductant in the SCRF by computing together the particulate correction factor and the storage estimate to determine the reductant storage capacity set point of the SCRF.
    Type: Application
    Filed: August 15, 2013
    Publication date: February 19, 2015
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Thomas Larose, JR., Christopher Whitt, Christopher C. Swoish, Joshua Clifford Bedford
  • Publication number: 20150047320
    Abstract: A vehicle and method of updating aging of a selective catalytic reduction filter (SCRF) of an exhaust treatment system of the vehicle are disclosed. The method includes determining a desorption rate estimate of a catalyst of the SCRF and determining an ash volume estimate representative of an amount of ash collected inside the SCRF. The method also includes determining an ash correction factor from the ash volume estimate and calculating, via a controller, a corrected desorption rate value by multiplying the ash correction factor with the desorption rate estimate to update the aging of the SCRF.
    Type: Application
    Filed: August 15, 2013
    Publication date: February 19, 2015
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Thomas Larose, Jr., Christopher Whitt, Christopher C. Swoish, Joshua Clifford Bedford
  • Patent number: 8919101
    Abstract: An exhaust system is provided. The exhaust system includes a first sensor that senses a level of nitrous oxide (NOx) in exhaust gas and generates a first sensor signal. A second sensor senses a level of ammonia (NH3) in the exhaust gas and generates a second sensor signal. A control module receives the first sensor signal and the second sensor signal, determines a desired reductant dosage based on the first sensor signal and the second sensor signal, and generates an injector control signal based on the desired reductant dosage.
    Type: Grant
    Filed: February 23, 2012
    Date of Patent: December 30, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Kevin Andrew Gady, Joshua Clifford Bedford
  • Publication number: 20140371054
    Abstract: A system and method for adapting the clean filter correction map for a selective catalyst reduction filter SCRF of an exhaust gas aftertreatment system are provided. The system may be in fluid communication with an engine of a vehicle. The system may include a first pressure sensor and a second pressure. A differential pressure module is in communication with the first pressure sensor and the second pressure sensor and configured to generate a delta pressure signal corresponding to a pressure drop between the first pressure sensor and the second pressure sensor. The system may also include a controller configured to determine a number of completed regeneration events of the SCRF; compare the number of completed regeneration events to an evaluation element; and enable an adaptation module by executing one of a first control action, a second control action, and a third control action.
    Type: Application
    Filed: June 17, 2013
    Publication date: December 18, 2014
    Inventors: Christopher Whitt, Thomas Larose, JR., Christopher C. Swoish, Joshua Clifford Bedford
  • Publication number: 20140352279
    Abstract: An exhaust gas treatment system for an engine includes an exhaust gas inlet tube configured to receive an exhaust gas from the engine. A particulate filter, a heat exchange system and first and second selective catalytic reduction (SCR) devices are in fluid communication with the exhaust gas inlet tube. The particulate filter is configured to undergo thermal regeneration when the exhaust gas in the particulate filter is heated above a regeneration temperature. The controller is configured to control a temperature difference, between a present temperature of the second SCR device and a predefined optimal second SCR temperature, to be within a predefined threshold during the thermal regeneration of the particulate filter. The controller may be configured to direct an injector to inject a reductant into the first SCR device when the temperature difference is below the predefined threshold, thereby controlling a NOx emission in the exhaust gas.
    Type: Application
    Filed: May 31, 2013
    Publication date: December 4, 2014
    Inventors: Eugene V. Gonze, Michael J. Paratore, JR., Joshua Clifford Bedford