Patents by Inventor Joshua Close

Joshua Close has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9394282
    Abstract: The instant invention provides compounds of formula I which are JAK inhibitors, and as such are useful for the treatment of JAK-mediated diseases such as rheumatoid arthritis, asthma, COPD and cancer.
    Type: Grant
    Filed: September 21, 2012
    Date of Patent: July 19, 2016
    Assignee: Merck Sharp & Dohme Corp.
    Inventors: Jason Brubaker, Joshua Close, Tony Siu, Graham Frank Smith, Luis E. Torres, Hyun Chong Woo, Jonathan R. Young, Zhongyong Wei, Feng Shi
  • Patent number: 8907147
    Abstract: The present invention provides an improved process for producing 1,1,2,3-tetrachloropropene. By using a first reactive distillation column for HCC-250fb dehydrochlorination, and a second reactive distillation column for HCC-240db dehydrochlorination/HCC-1230xf isomerization, the 1,1,2,3-tetrachloropropene manufacturing process can be greatly simplified, resulting in reduced equipment use, energy use, as well as increased productivity.
    Type: Grant
    Filed: January 30, 2014
    Date of Patent: December 9, 2014
    Assignee: Honeywell International Inc.
    Inventors: Haiyou Wang, Hsueh Sung Tung, Joshua Close, Terris Tianxue Yang
  • Patent number: 8889927
    Abstract: This invention relates to a method to improve 1,1,3-trichloropropene (HCC-1240za) and/or 3,3,3-trichloropropene (HCC-1240zf) selectivity in the dehydrochlorination of 1,1,1,3-tetrachloropropane (HCC-250fb). In normal practice, FeCl3 is used as the catalyst for the dehydrochlorination of HCC-250fb to produce 1,1,3-trichloropropene and/or 3,3,3-trichloropropene. Here the improvement comprises, using as the starting material, a mixture comprising HCC-250fb and Heavies generated from the reaction of CCl4 and ethylene to produce HCC-250fb, wherein the Heavies comprise one or more tetrachloropentane isomers. These compounds reduce or eliminate the formation of unwanted high boiling compounds (HBCs).
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: November 18, 2014
    Assignee: Honeywell International Inc.
    Inventors: Terris Yang, Joshua Close, Hsueh Sung Tung
  • Patent number: 8877991
    Abstract: This invention relates to a method to improve 1,1,3-trichloropropene selectivity in HCC-250fb (1,1,1,3-tetrachloropropane) dehydrochlorination. In normal practice, FeCl3 is used as the catalyst for the dehydrochlorination of HCC-250fb to produce 1,1,3-trichloropropene. In this invention as source of water is added into the reaction system to inhibit the formation of high boiling compounds such as pentachlorocyclohexene and/or hexachlorocyclohexane. Once source of water is H2O itself. Another source of water is one or more hydrated metal halides.
    Type: Grant
    Filed: February 17, 2014
    Date of Patent: November 4, 2014
    Assignee: Honeywell International Inc.
    Inventors: Terris Yang, Hsueh Sung Tung, Robert Johnson, Joshua Close
  • Publication number: 20140275658
    Abstract: This invention relates to a method to improve 1,1,3-trichloropropene (HCC-1240za) and/or 3,3,3-trichloropropene (HCC-1240zf) selectivity in the dehydrochlorination of 1,1,1,3-tetrachloropropane (HCC-250fb). In normal practice, FeCl3 is used as the catalyst for the dehydrochlorination of HCC-250fb to produce 1,1,3-trichloropropene and/or 3,3,3-trichloropropene. Here the improvement comprises, using as the starting material, a mixture comprising HCC-250fb and Heavies generated from the reaction of CCl4 and ethylene to produce HCC-250fb, wherein the Heavies comprise one or more tetrachloropentane isomers. These compounds reduce or eliminate the formation of unwanted high boiling compounds (HBCs).
    Type: Application
    Filed: March 12, 2013
    Publication date: September 18, 2014
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Terris Yang, Joshua Close, Hsueh Sung Tung
  • Patent number: 8835702
    Abstract: Disclosed is a process for the manufacture of haloalkane compounds, and more particularly, an improved process for the manufacture of the compound 1,1,1,3,3-penta-chloropropane (HCC-240fa), which mitigates the formation of by-products from vinyl chloride (CH2?CHCl). The present invention is also useful in the manufacture of other haloalkane compounds such as HCC-250 and HCC-360. One embodiment of the invention comprises a method for mitigating 1,1,3,3,5,5-hexachloropentane and 1,1,1,3,5,5-hexachloropentane formation in the HCC-240fa manufacturing process, in which FeCl3, is introduced to a reactor only after the start-up phase has ended and a continuous operation has started. In a preferred embodiment, “pre-chelated” FeCl3, which is concentrated in a catalyst recovery column, is introduced to reactor after the continuous operation has started.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: September 16, 2014
    Assignee: Honeywell International Inc.
    Inventors: Joshua Close, Haiyou Wang, Hsueh Sung Tung
  • Publication number: 20140235641
    Abstract: The instant invention provides compounds of formula I which are JAK inhibitors, and as such are useful for the treatment of JAK-mediated diseases such as rheumatoid arthritis, asthma, COPD and cancer.
    Type: Application
    Filed: September 21, 2012
    Publication date: August 21, 2014
    Inventors: Jason Brubaker, Joshua Close, Tony Siu, Graham Frank Smith, Luis E. Torres, Hyun Chong Woo, Jonathan R. Young, Zhongyong Wei, Feng Shi
  • Publication number: 20140235907
    Abstract: This invention relates to a method to improve 1,1,3-trichloropropene selectivity in HCC-250fb (1,1,1,3-tetrachloropropane) dehydrochlorination. In normal practice, FeCl3 is used as the catalyst for the dehydrochlorination of HCC-250fb to produce 1,1,3-tri-chloropropene. In this invention as source of water is added into the reaction system to inhibit the formation of high boiling compounds such as pentachlorocyclohexene and/or hexachlorocyclohexane. Once source of water is H2O itself. Another source of water is one or more hydrated metal halides.
    Type: Application
    Filed: February 17, 2014
    Publication date: August 21, 2014
    Applicant: Honeywell International Inc.
    Inventors: Terris Yang, Hsueh Sung Tung, Robert Johnson, Joshua Close
  • Publication number: 20140221705
    Abstract: The present invention provides an improved process for producing 1,1,2,3-tetrachloropropene. By using a first reactive distillation column for HCC-250fb dehydrochlorination, and a second reactive distillation column for HCC-240db dehydrochlorination/HCC-1230xf isomerization, the 1,1,2,3-tetrachloropropene manufacturing process can be greatly simplified, resulting in reduced equipment use, energy use, as well as increased productivity.
    Type: Application
    Filed: January 30, 2014
    Publication date: August 7, 2014
    Applicant: Honeywell International Inc.
    Inventors: Haiyou Wang, Hsueh Sung Tung, Joshua Close, Terris Tianxue Yang
  • Patent number: 8722946
    Abstract: Disclosed is a process for the manufacture of haloalkane compounds, and more particularly, to an improved process for the manufacture of the compound 1,1,1,3,3-pentachloropropane (HCC-240fa), which mitigates the formation of by-products. The present invention is also useful in the manufacture of other haloalkane compounds such as HCC-250 and HCC-360. One embodiment of the process comprises a method and system for avoiding the formation of polyvinyl chloride during the production of HCC-240fa from CCl4, in which vinyl chloride (VCM) is fed into a reactor as a vapor instead of as a liquid, using a diffusing device to further increase the contact surface between VCM vapor and CCl4.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: May 13, 2014
    Assignee: Honeywell International Inc.
    Inventors: Joshua Close, Haiyou Wang, Hsueh Sung Tung
  • Publication number: 20120305454
    Abstract: Disclosed is a method for capturing and recycling iron catalyst used in the production of haloalkane compounds and more particularly, to an improved process for the manufacture of the compound 1,1,1,3,3-pentachloropropane (HCC-240fa), in which an electromagnetic separation unit (EMSU) is used to facilitate the reaction. When energized, the EMSU functions to remove all iron particles from the reactor effluent; when de-energized, the iron particles captured by the EMSU can be flushed back into the reactor for re-use in the continued production of HCC-240fa. The present invention is also useful in the manufacturing processes for other haloalkane compounds such as HCC-250 and HCC-360.
    Type: Application
    Filed: May 15, 2012
    Publication date: December 6, 2012
    Inventors: Joshua Close, Haiyou Wang, Hsueh Sung Tung, Stephen A. Cottrell
  • Publication number: 20120310020
    Abstract: Disclosed is a process for the manufacture of haloalkane compounds, and more particularly, to an improved process for the manufacture of the compound 1,1,1,3,3-pentachloropropane (HCC-240fa), which mitigates the formation of by-products. The present invention is also useful in the manufacture of other haloalkane compounds such as HCC-250 and HCC-360. One embodiment of the process comprises a method and system for avoiding the formation of polyvinyl chloride during the production of HCC-240fa from CC14, in which vinyl chloride (VCM) is fed into a reactor as a vapor instead of as a liquid, using a diffusing device to further increase the contact surface between VCM vapor and CC14.
    Type: Application
    Filed: May 25, 2012
    Publication date: December 6, 2012
    Inventors: Joshua Close, Haiyou Wang, Hsueh Sung Tung
  • Publication number: 20120310021
    Abstract: Disclosed is a process for the manufacture of haloalkane compounds, and more particularly, an improved process for the manufacture of the compound 1,1,1,3,3-penta-chloropropane (HCC-240fa), which mitigates the formation of by-products from vinyl chloride (CH2?CHCl). The present invention is also useful in the manufacture of other haloalkane compounds such as HCC-250 and HCC-360. One embodiment of the invention comprises a method for mitigating 1,1,3,3,5,5-hexachloropentane and 1,1,1,3,5,5-hexachloropentane formation in the HCC-240fa manufacturing process, in which FeCl3, is introduced to a reactor only after the start-up phase has ended and a continuous operation has started. In a preferred embodiment, “pre-chelated” FeCl3, which is concentrated in a catalyst recovery column, is introduced to reactor after the continuous operation has started.
    Type: Application
    Filed: May 25, 2012
    Publication date: December 6, 2012
    Inventors: Joshua Close, Haiyou Wang, Hsueh Sung Tung
  • Patent number: 8026260
    Abstract: The present invention relates to a novel class of histone deacetylase inhibitors with aryl-pyrazolyl motifs. The compounds of this invention can be used to treat cancer. The compounds of this invention are suitable for use in selectively inducing terminal differentiation, and arresting cell growth and/or apoptosis of neoplastic cells, thereby inhibiting proliferation of such cells. Thus, the compounds of the present invention are useful in treating a patient having a tumor characterized by proliferation of neoplastic cells. The present invention further provides pharmaceutical compositions comprising the compounds of this invention and safe dosing regimens of these pharmaceutical compositions, which are easy to follow, and which result in a therapeutically effective amount of the compounds of this invention in vivo.
    Type: Grant
    Filed: October 30, 2006
    Date of Patent: September 27, 2011
    Assignee: Merck Sharp & Dohme Corp.
    Inventors: Joshua Close, Richard W. Heidebrecht, Jr., Solomon Kattar, Thomas A. Miller, David Sloman, Matthew G Stanton, Paul Tempest, David J. Witter
  • Patent number: 7981874
    Abstract: The present invention relates to a novel class of phosphorus derivatives. The phosphorus compounds can be used to treat cancer. The phosphorus compounds can also inhibit histone deacetylase and are suitable for use in selectively inducing terminal differentiation, and arresting cell growth and/or apoptosis of neoplastic cells, thereby inhibiting proliferation of such cells. Thus, the compounds of the present invention are useful in treating a patient having a tumor characterized by proliferation of neoplastic cells. The compounds of the invention may also be useful in the prevention and treatment of TRX-mediated diseases, such as autoimmune, allergic and inflammatory diseases, and in the prevention and/or treatment of diseases of the central nervous system (CNS), such as neurodegenerative diseases.
    Type: Grant
    Filed: July 16, 2007
    Date of Patent: July 19, 2011
    Assignee: Merck Sharp & Dohme Corp.
    Inventors: Joshua Close, Jonathan Grimm, Richard W. Heidebrecht, Jr., Solomon Kattar, Thomas A. Miller, Karin M. Otte, Scott Peterson, Phieng Siliphaivanh, Paul J. Tempest, Kevin J. Wilson, David J. Witter
  • Patent number: 7834026
    Abstract: The present invention relates to a novel class of substituted spirocyclic compounds, represented by the following structural Formula: I Wherein A, B and D are independently selected from CR12, NR1a, C(O) and O; E is selected from a bond, CR12, NR1a, C(O) and O; wherein at least one of A, B, D or E is CR12; and provided that when A is O, then E is not O; G is CR12; R is selected from NH2 and OH; These compounds can inhibit histone deacetylase and are suitable for use in selectively inducing termin differentiation, and arresting cell growth and/or apoptosis of neoplastic cells, thereby inhibiting proliferation of such cells. Thus, the compounds of the present invention are useful in treating a patient having a tumor characterized by proliferation of neoplastic cells.
    Type: Grant
    Filed: November 17, 2006
    Date of Patent: November 16, 2010
    Assignee: Merck Sharp & Dohme Corp.
    Inventors: Scott C. Berk, Joshua Close, Christopher Hamblett, Richard W. Heidebrecht, Solomon D. Kattar, Laura T. Kliman, Dawn M. Mampreian, Joey L. Methot, Thomas Miller, David L. Sloman, Matthew G. Stanton, Paul Tempest, Anna A. Zabierek
  • Publication number: 20090291965
    Abstract: The present invention relates to a novel class of histone deacetylase inhibitors with aryl-pyrazolyl motifs. The compounds of this invention can be used to treat cancer. The compounds of this invention are suitable for use in selectively inducing terminal differentiation, and arresting cell growth and/or apoptosis of neoplastic cells, thereby inhibiting proliferation of such cells. Thus, the compounds of the present invention are useful in treating a patient having a tumor characterized by proliferation of neoplastic cells. The present invention further provides pharmaceutical compositions comprising the compounds of this invention and safe dosing regimens of these pharmaceutical compositions, which are easy to follow, and which result in a therapeutically effective amount of the compounds of this invention in vivo.
    Type: Application
    Filed: October 30, 2006
    Publication date: November 26, 2009
    Inventors: Joshua Close, Richard W. Heidebrecht, Solomon Kattar, Thomas A. Miller, David Sloman, Matthew G. Stanton, Paul Tempest, David J. Witter
  • Publication number: 20090270351
    Abstract: The present invention relates to a novel class of phosphorus derivatives. The phosphorus compounds can be used to treat cancer. The phosphorus compounds can also inhibit histone deacetylase and are suitable for use in selectively inducing terminal differentiation, and arresting cell growth and/or apoptosis of neoplastic cells, thereby inhibiting proliferation of such cells. Thus, the compounds of the present invention are useful in treating a patient having a tumor characterized by proliferation of neoplastic cells. The compounds of the invention may also be useful in the prevention and treatment of TRX-mediated diseases, such as autoimmune, allergic and inflammatory diseases, and in the prevention and/or treatment of diseases of the central nervous system (CNS), such as neurodegenerative diseases.
    Type: Application
    Filed: July 16, 2007
    Publication date: October 29, 2009
    Inventors: Joshua Close, Jonathan Grimm, Richard W. Heidebrecht, JR., Solomon Kattar, Thomas A. Miller, Karin M. Otte, Scott Peterson, Phieng Siliphaivanh, Paul J. Tempest, Kevin J. Wilson, David J. Witter
  • Publication number: 20090209566
    Abstract: The present invention relates to a novel class of substituted spirocyclic compounds, represented by the following structural Formula: I Wherein A, B and D are independently selected from CR12, NR1a, C(O) and O; E is selected from a bond, CR12, NR1a, C(O) and O; wherein at least one of A, B, D or E is CR12; and provided that when A is O, then E is not O; G is CR12; R is selected from NH2 and OH; These compounds can inhibit histone deacetylase and are suitable for use in selectively inducing termin differentiation, and arresting cell growth and/or apoptosis of neoplastic cells, thereby inhibiting proliferation of such cells. Thus, the compounds of the present invention are useful in treating a patient having a tumor characterized by proliferation of neoplastic cells.
    Type: Application
    Filed: November 17, 2006
    Publication date: August 20, 2009
    Inventors: Scott C. Berk, Joshua Close, Christopher Hamblett, Richard W. Heidebrecht, Solomon D. Kattar, Laura T. Kliman, Dawn M. Mampreian, Joey L. Methot, Thomas Miller, David L. Sloman, Matthew G. Stanton, Paul Tempest, Anna A. Zabierek
  • Patent number: 7544695
    Abstract: The present invention relates to a novel class of substituted spirocyclic compounds. These compounds can inhibit histone deacetylase and are suitable for use in selectively inducing terminal differentiation, and arresting cell growth and/or apoptosis of neoplastic cells, thereby inhibiting proliferation of such cells. Thus, the compounds of the present invention are useful in treating a patient having a tumor characterized by proliferation of neoplastic cells. The compounds of the invention may also be useful in the prevention and treatment of TRX-mediated diseases, such as autoimmune, allergic and inflammatory diseases, and in the prevention and/or treatment of diseases of the central nervous system (CNS), such as neurodegenerative diseases.
    Type: Grant
    Filed: November 16, 2006
    Date of Patent: June 9, 2009
    Assignee: Merck & Co., Inc.
    Inventors: Scott C. Berk, Joshua Close, Christopher Hamblett, Richard W. Heidebrecht, Solomon D. Kattar, Laura T. Kliman, Dawn M. Mampreian, Joey L. Methot, Thomas Miller, David L. Sloman, Matthew G. Stanton, Paul Tempest, Anna A. Zabierek