Patents by Inventor Joshua D. Talbert

Joshua D. Talbert has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11788963
    Abstract: Minimizing image sensor input/output pads in a pulsed fluorescence imaging system is disclosed. A system includes an emitter for emitting pulses of electromagnetic radiation and an image sensor comprising a pixel array for sensing reflected electromagnetic radiation. The system includes a plurality of bidirectional pads comprising an output state for issuing data and an input state for receiving data. The system includes a controller configured to synchronize timing of the emitter and the image sensor. The system is such that at least a portion of the pulses of electromagnetic radiation emitted by the emitter comprises electromagnetic radiation having a wavelength from about 770 nm to about 790 nm and/or from about 795 nm to about 815 nm.
    Type: Grant
    Filed: January 29, 2020
    Date of Patent: October 17, 2023
    Assignee: Cilag GmbH International
    Inventors: Joshua D. Talbert, Donald M. Wichern
  • Patent number: 11758256
    Abstract: Systems, methods, and devices for fluorescence imaging in a light deficient environment are disclosed. A system includes an emitter for emitting pulses of electromagnetic radiation and an image sensor comprising a pixel array for sensing reflected electromagnetic radiation. The system includes a controller comprising a processor in electrical communication with the image sensor and the emitter. The system is such that the controller synchronizes timing of the pulses of electromagnetic radiation during a blanking period of the image sensor. The system is such that at least a portion of the pulses of electromagnetic radiation emitted by the emitter comprises one or more of electromagnetic radiation between 770 nm and 790 nm and/or electromagnetic radiation between 795 nm and 815 nm.
    Type: Grant
    Filed: October 24, 2019
    Date of Patent: September 12, 2023
    Assignee: Cilag GmbH International
    Inventors: Joshua D. Talbert, Donald M. Wichern
  • Patent number: 11754500
    Abstract: Minimizing image sensor input/output pads in a pulsed fluorescence imaging system is disclosed. A system includes an emitter for emitting pulses of electromagnetic radiation and an image sensor comprising a pixel array for sensing reflected electromagnetic radiation. The system includes a plurality of bidirectional pads comprising an output state for issuing data and an input state for receiving data. The system includes a controller configured to synchronize timing of the emitter and the image sensor. The system is such that at least a portion of the pulses of electromagnetic radiation emitted by the emitter comprises electromagnetic radiation having a wavelength from about 770 nm to about 790 nm and/or from about 795 nm to about 815 nm.
    Type: Grant
    Filed: January 29, 2020
    Date of Patent: September 12, 2023
    Assignee: Cilag GmbH International
    Inventors: Joshua D. Talbert, Donald M. Wichern
  • Patent number: 11747479
    Abstract: Pulsed hyperspectral, fluorescence, and laser mapping imaging in a light deficient environment is disclosed. A system includes an emitter for emitting pulses of electromagnetic radiation and an image sensor comprising a pixel array for sensing reflected electromagnetic radiation. The system includes a controller configured to synchronize timing of the emitter and the image sensor. The system is such that at least a portion of the pulses of electromagnetic radiation emitted by the emitter comprises one or more of a hyperspectral emission, a fluorescence emission, or a laser mapping pattern.
    Type: Grant
    Filed: December 16, 2021
    Date of Patent: September 5, 2023
    Assignee: Cilag GmbH International
    Inventors: Joshua D. Talbert, Donald M. Wichern
  • Patent number: 11740448
    Abstract: Driving an emitter to emit pulses of electromagnetic radiation according to a jitter specification in a fluorescence imaging system is described. A system includes an emitter for emitting pulses of electromagnetic radiation and an image sensor comprising a pixel array for sensing reflected electromagnetic radiation. The system includes a driver for driving emissions by the emitter according to a jitter specification. The system is such that at least a portion of the pulses of electromagnetic radiation emitted by the emitter comprises electromagnetic radiation having a wavelength from about 770 nm to about 795 nm and/or from about 795 nm to about 815 nm.
    Type: Grant
    Filed: March 17, 2020
    Date of Patent: August 29, 2023
    Assignee: Cilag GmbH International
    Inventors: Joshua D. Talbert, Donald M. Wichern
  • Patent number: 11727542
    Abstract: Super resolution and color motion artifact correction in a pulsed hyperspectral, fluorescence, and laser mapping imaging system. A method includes actuating an emitter to emit pulses of electromagnetic radiation and sensing reflected electromagnetic radiation with a pixel array of an image sensor. The method includes detecting motion across two or more sequential exposure frames, compensating for the detected motion, and combining the two or more sequential exposure frames to generate an image frame. The method is such that at least a portion of the pulses of electromagnetic radiation emitted by the emitter comprises one or more of: electromagnetic radiation having a wavelength from about 513 nm to about 545 nm, from about 565 nm to about 585 nm, from about 900 nm to about 1000 nm, an excitation wavelength of electromagnetic radiation that causes a reagent to fluoresce, or a laser mapping pattern.
    Type: Grant
    Filed: June 13, 2022
    Date of Patent: August 15, 2023
    Assignee: Cilag GmbH International
    Inventors: Joshua D. Talbert, Donald M. Wichern
  • Patent number: 11716543
    Abstract: Systems, methods, and devices for fluorescence imaging with increased dynamic range are disclosed. A system includes an emitter for emitting pulses of electromagnetic radiation and an image sensor comprising a pixel array for sensing reflected electromagnetic radiation, wherein the pixel array comprises a plurality of pixels each configurable as a short exposure pixel or a long exposure pixel. The system includes a controller comprising a processor in electrical communication with the image sensor and the emitter. The system is such that at least a portion of the pulses of electromagnetic radiation emitted by the emitter comprises one or more of electromagnetic radiation having a wavelength from about 770 nm to about 790 nm or electromagnetic radiation having a wavelength from about 795 nm to about 815 nm.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: August 1, 2023
    Assignee: Cilag GmbH International
    Inventors: Joshua D. Talbert, Donald M. Wichern
  • Patent number: 11712155
    Abstract: Fluorescence videostroboscopy imaging is described. A system includes an emitter for emitting pulses of electromagnetic radiation and an image sensor comprising a pixel array for sensing reflected electromagnetic radiation. The system includes a controller configured to cause the emitter to emit the pulses of electromagnetic radiation at a strobing frequency determined based on a vibration frequency of vocal cords of a user. The system is such that at least a portion of the pulses of electromagnetic radiation emitted by the emitter comprises electromagnetic radiation having a wavelength from about 795 nm to about 815 nm.
    Type: Grant
    Filed: March 6, 2020
    Date of Patent: August 1, 2023
    Assignee: Cilag GmbH Intenational
    Inventors: Joshua D. Talbert, Donald M. Wichern
  • Patent number: 11716533
    Abstract: Pulsed fluorescence imaging without input clock or data transmission clock is disclosed. A system includes an emitter for emitting pulses of electromagnetic radiation and an image sensor comprising a pixel array for sensing reflected electromagnetic radiation. The system includes a plurality of bidirectional data pads and a controller in communication with the image sensor. The system is such that at least a portion of the pulses of electromagnetic radiation emitted by the emitter comprises one or more of: electromagnetic radiation having a wavelength from about 770 nm to about 790 nm.
    Type: Grant
    Filed: January 21, 2020
    Date of Patent: August 1, 2023
    Assignee: Cilag GmbH International
    Inventors: Joshua D. Talbert, Donald M. Wichern
  • Patent number: 11700995
    Abstract: Speckle removal in a pulsed fluorescence imaging system is described. A system includes a coherent light source for emitting pulses of coherent light, a fiber optic bundle connected to the coherent light source, and a vibrating mechanism attached to the fiber optic bundle. The system includes and an image sensor comprising a pixel array for sensing reflected electromagnetic radiation. The system is such that at least a portion of the pulses of coherent light emitted by the coherent light source comprises electromagnetic radiation having a wavelength from about 770 nm to about 790 nm.
    Type: Grant
    Filed: February 24, 2020
    Date of Patent: July 18, 2023
    Inventors: Joshua D. Talbert, Donald M. Wichern
  • Publication number: 20230224437
    Abstract: A system and methods for providing and reclaiming a single use imaging device for sterile environments is disclosed and described. The system may include a single use high definition camera used for general purpose surgical procedures including, but not limited to: arthroscopic, laparoscopic, gynecologic, and urologic procedures, may comprise an imaging device that is a sterile and designed to ensure single use. The imaging device may have a single imaging sensor, either CCD or CMOS, encased in a housing.
    Type: Application
    Filed: March 7, 2023
    Publication date: July 13, 2023
    Applicant: DePuy Synthes Products, Inc.
    Inventors: Joshua D. Talbert, Jeremiah D. Henley, Donald M. Wichern, Curtis L. Wichern
  • Patent number: 11690498
    Abstract: Endoscopic light refraction imaging techniques are described for configuring a viewing trocar and/or angled endoscope with a light refracting element, such as glass and/or plastic prism for instance. The light refracting element can be utilized in and/or with the viewing trocar to refract (i.e., bend) light passing into the trocar through the trocar's window. As a result, the angled endoscope's field of view can be substantially aligned with the field of view of the trocar's window, thus allowing the angled endoscope and viewing trocar to be used together to create ports in a patient, including initial ports of endoscopic surgical procedures.
    Type: Grant
    Filed: February 17, 2020
    Date of Patent: July 4, 2023
    Assignee: DePuy Synthes Products, Inc.
    Inventors: Jeremiah D. Henley, Joshua D. Talbert, Brian Dean, Perry W. Croll, Marshall Denton, J. Michael Brown
  • Patent number: 11686847
    Abstract: Pulsed fluorescence imaging in a light deficient environment is disclosed. A system includes an emitter for emitting pulses of electromagnetic radiation and an image sensor comprising a pixel array for sensing reflected electromagnetic radiation. The system includes a controller configured to synchronize timing of the emitter and the image sensor. The system is such that at least a portion of the pulses of electromagnetic radiation emitted by the emitter comprises electromagnetic radiation having a wavelength from about 795 nm to about 815 nm.
    Type: Grant
    Filed: January 28, 2020
    Date of Patent: June 27, 2023
    Inventors: Joshua D. Talbert, Donald M. Wichern
  • Publication number: 20230181018
    Abstract: The disclosure relates to an endoscopic light source that includes a first emitter. The first emitter may emit light of a first wavelength at a dichroic mirror which reflects the light of the first wavelength to a plurality of optical fibers. The endoscopic light source further comprises a second emitter. The second emitter may emit light of a second wavelength at a second dichroic mirror which reflects the light of the second wavelength to the plurality of optical fibers. In one embodiment, the first dichroic mirror may be transparent to the light of the second wavelength, allowing the light of the second wavelength to pass through the first dichroic mirror.
    Type: Application
    Filed: February 7, 2023
    Publication date: June 15, 2023
    Applicant: DePuy Synthes Products, Inc.
    Inventors: Joshua D. Talbert, Jeremiah D. Henley, Donald M. Wichern
  • Publication number: 20230186497
    Abstract: An endoscopic imaging system for use in a light deficient environment includes an imaging device having a tube, one or more image sensors, and a lens assembly including at least one optical elements that corresponds to the one or more image sensors. The endoscopic system includes a display for a user to visualize a scene and an image signal processing controller. The endoscopic system includes a light engine having an illumination source generating one or more pulses of electromagnetic radiation and a lumen transmitting one or more pulses of electromagnetic radiation to a distal tip of an endoscope.
    Type: Application
    Filed: February 7, 2023
    Publication date: June 15, 2023
    Applicant: Cilag GmbH International
    Inventors: Joshua D. Talbert, Donald M. Wichern
  • Patent number: 11674848
    Abstract: Systems, methods, and devices for hyperspectral imaging with increased dynamic range are disclosed. A system includes an emitter for emitting pulses of electromagnetic radiation and an image sensor comprising a pixel array for sensing reflected electromagnetic radiation, wherein the pixel array comprises a plurality of pixels each configurable as a short exposure pixel or a long exposure pixel. The system includes a controller comprising a processor in electrical communication with the image sensor and the emitter. The system is such that at least a portion of the pulses of electromagnetic radiation emitted by the emitter comprises one or more of electromagnetic radiation having a wavelength from about 513 nm to about 545 nm, electromagnetic radiation having a wavelength from about 565 nm to about 585 nm, or electromagnetic radiation having a wavelength from about 900 nm to about 1000 nm.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: June 13, 2023
    Inventors: Joshua D. Talbert, Donald M. Wichern
  • Patent number: 11674677
    Abstract: A system for providing illumination for an endoscope device. The system includes a light source comprising light bundles, wherein each light bundle comprises light emitters. The light source sequentially pulses electromagnetic energy in individual electromagnetic partitions, where each of the plurality of light bundles corresponds to one of the individual electromagnetic partitions. The system includes an electromagnetic sensor embedded within the light source to sense electromagnetic energy emitted from at least one, but less than all, of the light emitters within each of the light bundles. The system includes a control circuit in electronic communication with the electromagnetic sensor and at least one of the light emitters, wherein the electromagnetic sensor receives electromagnetic energy from at least one of the light emitters, and wherein the electromagnetic sensor measures an amount of electromagnetic energy generated by the at least one of the light emitters.
    Type: Grant
    Filed: May 28, 2020
    Date of Patent: June 13, 2023
    Assignee: DePuy Synthes Products, Inc.
    Inventors: Joshua D. Talbert, Donald M. Wichern, Laurent Blanquart
  • Patent number: 11668921
    Abstract: Driving an emitter to emit pulses of electromagnetic radiation according to a jitter specification in a hyperspectral, fluorescence, and laser mapping imaging system is described. A system includes an emitter for emitting pulses of electromagnetic radiation and an image sensor comprising a pixel array for sensing reflected electromagnetic radiation. The system includes a driver for driving emissions by the emitter according to a jitter specification. The system is h that at least a portion of the pulses of electromagnetic radiation emitted by the emitter comprises one or more of a hyperspectral emission, a fluorescence emission, and/or a laser mapping pattern.
    Type: Grant
    Filed: August 24, 2021
    Date of Patent: June 6, 2023
    Inventors: Joshua D. Talbert, Donald M. Wichern
  • Patent number: 11668920
    Abstract: Driving an emitter to emit pulses of electromagnetic radiation according to a jitter specification in a fluorescence imaging system is described. A system includes an emitter for emitting pulses of electromagnetic radiation and an image sensor comprising a pixel array for sensing reflected electromagnetic radiation. The system includes a driver for driving emissions by the emitter according to a jitter specification. The system is such that at least a portion of the pulses of electromagnetic radiation emitted by the emitter comprises electromagnetic radiation having a wavelength from about 770 nm to about 790 nm.
    Type: Grant
    Filed: August 9, 2021
    Date of Patent: June 6, 2023
    Inventors: Joshua D. Talbert, Donald M. Wichern
  • Patent number: 11668919
    Abstract: Driving an emitter to emit pulses of electromagnetic radiation according to a jitter specification in a laser mapping imaging system is described. A system includes an emitter for emitting pulses of electromagnetic radiation and an image sensor comprising a pixel array for sensing reflected electromagnetic radiation. The system includes a driver for driving emissions by the emitter according to a jitter specification. The system is such that at least a portion of the pulses of electromagnetic radiation emitted by the emitter comprises a laser mapping pattern.
    Type: Grant
    Filed: August 2, 2021
    Date of Patent: June 6, 2023
    Inventors: Joshua D. Talbert, Donald M. Wichern