Patents by Inventor Joshua Djon Green

Joshua Djon Green has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11963780
    Abstract: An insertable cardiac monitor (ICM) with induction-based recharging capabilities and a transmitting coil for recharging the same are disclosed. The length of the monitoring performed by the ICM is extended and the functionality of the ICM enhanced, by including an internal energy harvesting module that allows for charging the ICM at a high speed without burning the patient or overheating components of the ICM. Internally, the energy harvesting module includes at least two overlapping receiving coils that are spaced to be orthogonal to each other and that have a tilt angle of substantially 45°. Such overlapping wire combination allows to minimize mutual inductance of the solenoid coils and increase the rate at which energy can be provided to the energy harvesting module. Further, the rate at which the energy is transmitted from the outside can be increased by defining in a transmitting coil a substantially triangular gap.
    Type: Grant
    Filed: April 28, 2023
    Date of Patent: April 23, 2024
    Assignee: BARDY DIAGNOSTICS, INC.
    Inventors: Jason Felix, Joshua Djon Green, Gust H. Bardy, Henry James Millican
  • Patent number: 11918364
    Abstract: An extended wear electrocardiography patch is provided. A flexible backing is formed of an elongated strip of stretchable material. An electrocardiographic electrode is affixed to and conductively exposed on a contact surface of each end of the elongated strip. A flexible circuit is affixed on each end of the elongated strip. A non-conductive receptacle is adhered on one of the ends of the elongated strip on a surface opposite the contact surface and removably receives an electrocardiography monitor operable to obtain electrocardiographic signals. A physiological sensor is provided with the electrocardiography monitor or on the flexible backing. Memory is provided on the flexible backing and is programmed with a sampling rate to instruct the physiological sensor to obtain readings of physiological data. A battery is positioned on one end of the flexible backing to provide power to one or more of the physiological sensors and the electrocardiography monitor.
    Type: Grant
    Filed: October 19, 2020
    Date of Patent: March 5, 2024
    Assignee: BARDY DIAGNOSTICS, INC.
    Inventors: Jason Felix, Gust H. Bardy, Jon Mikalson Bishay, Joshua Djon Green
  • Publication number: 20230363641
    Abstract: An implantable medical device is disclosed. A housing includes a hollow body forming a first electrode on an outer surface with end caps affixed to opposite ends, one end cap forming a second electrode. A microcontroller circuit is provided and includes a microcontroller operable under program instructions stored within a non-volatile memory device. An analog front end is interfaced to the electrodes to sense electrocardiographic signals. A transceiver circuit is operable to wirelessly communicate with an external data device. The program instructions define instructions to continuously sample the electrocardiographic signals into the non-volatile memory device and to offload the non-volatile memory device to the external data device. A receiving coil and a charging circuit are operable to charge an onboard power source for the microcontroller circuit.
    Type: Application
    Filed: July 10, 2023
    Publication date: November 16, 2023
    Inventors: Jason Felix, Joshua Djon Green, Corey B. Williamson, Gust H. Bardy
  • Patent number: 11794026
    Abstract: A circuit with low voltage energy storage for use in generating a defibrillation waveform is described. A charging circuit includes a pulse capacitor that stores defibrillation energy, a high voltage generator circuit that includes a transformer and a rectification circuit through which the pulse capacitor is charged with the defibrillation energy, and a discharge and polarity control circuit electrically connected to the pulse capacitor and switchable to receive the defibrillation energy, which is output as a defibrillation waveform. A low voltage energy supplementing circuit is electrically connected to the pulse capacitor in line with the high voltage generator circuit and stores supplemental defibrillation energy. A microcontroller is adapted to enable the low voltage energy supplementing circuit to modulate the delivery of the stored supplemental energy to the pulse capacitor to augment the defibrillation energy derived from\the initial defibrillation waveform.
    Type: Grant
    Filed: January 18, 2023
    Date of Patent: October 24, 2023
    Inventors: Gust H. Bardy, Jason Felix, Joshua Djon Green
  • Publication number: 20230263449
    Abstract: An insertable cardiac monitor (ICM) with induction-based recharging capabilities and a transmitting coil for recharging the same are disclosed. The length of the monitoring performed by the ICM is extended and the functionality of the ICM enhanced, by including an internal energy harvesting module that allows for charging the ICM at a high speed without burning the patient or overheating components of the ICM. Internally, the energy harvesting module includes at least two overlapping receiving coils that are spaced to be orthogonal to each other and that have a tilt angle of substantially 45°. Such overlapping wire combination allows to minimize mutual inductance of the solenoid coils and increase the rate at which energy can be provided to the energy harvesting module. Further, the rate at which the energy is transmitted from the outside can be increased by defining in a transmitting coil a substantially triangular gap.
    Type: Application
    Filed: April 28, 2023
    Publication date: August 24, 2023
    Inventors: Jason Felix, Joshua Djon Green, Gust H. Bardy, Henry James Millican
  • Patent number: 11696681
    Abstract: An implantable medical device is disclosed. A housing includes a hollow body forming a first electrode on an outer surface with end caps affixed to opposite ends, one end cap forming a second electrode. A microcontroller circuit is provided and includes a microcontroller operable under program instructions stored within a non-volatile memory device. An analog front end is interfaced to the electrodes to sense electrocardiographic signals. A transceiver circuit is operable to wirelessly communicate with an external data device. The program instructions define instructions to continuously sample the electrocardiographic signals into the non-volatile memory device and to offload the non-volatile memory device to the external data device. A receiving coil and a charging circuit are operable to charge an onboard power source for the microcontroller circuit.
    Type: Grant
    Filed: July 15, 2020
    Date of Patent: July 11, 2023
    Assignee: Bardy Diagnostics Inc.
    Inventors: Jason Felix, Joshua Djon Green, Corey B. Williamson, Gust H. Bardy
  • Patent number: 11653880
    Abstract: A subcutaneous insertable cardiac monitor (ICM) for use in performing long term electrocardiographic (ECG) monitoring is disclosed. The length of the monitoring performed by the ICM is extended, potentially for a life time of the patient, and the functionality of the ICM is enhanced, including enhancing the rate at which data can be offloaded from the ICM, by including an internal energy harvesting module in the ICM. The energy harvesting module harvests energy from outside the ICM, and provides the harvested energy for powering the circuitry of the ICM, either directly or by recharging a power cell within the ICM. As the circuitry of the ICM requires a low amount of electrical power, the harvested energy can be sufficient to support the functioning of the ICM even when the electrical power stored on the ICM at the time of implantation runs out.
    Type: Grant
    Filed: September 13, 2021
    Date of Patent: May 23, 2023
    Assignee: BARDY DIAGNOSTICS, INC.
    Inventors: Jason Felix, Joshua Djon Green, Gust H. Bardy
  • Patent number: 11642065
    Abstract: An insertable cardiac monitor (ICM) with induction-based recharging capabilities and a transmitting coil for recharging the same are disclosed. The length of the monitoring performed by the ICM is extended and the functionality of the ICM enhanced, by including an internal energy harvesting module that allows for charging the ICM at a high speed without burning the patient or overheating components of the ICM. Internally, the energy harvesting module includes at least two overlapping receiving coils that are spaced to be orthogonal to each other and that have a tilt angle of substantially 45°. Such overlapping wire combination allows to minimize mutual inductance of the solenoid coils and increase the rate at which energy can be provided to the energy harvesting module. Further, the rate at which the energy is transmitted from the outside can be increased by defining in a transmitting coil a substantially triangular gap.
    Type: Grant
    Filed: January 10, 2022
    Date of Patent: May 9, 2023
    Assignee: BARDY DIAGNOSTICS, INC.
    Inventors: Jason Felix, Joshua Djon Green, Gust H. Bardy, Henry James Millican
  • Patent number: 11445966
    Abstract: An extended wear electrocardiography patch is provided. An integrated flexible circuit includes a single piece of material and has an upper end and a lower end opposite the upper end. A mirror image of the upper end extends from at least a portion of one side of the upper end and folds over the upper end. One circuit trace is positioned on the upper end and one circuit trace is positioned on the lower end. Electrical pads are located on a contact surface of the upper end and on an outward facing surface of the mirror image of the upper end. An electrocardiographic electrode is positioned on the contact surface of the upper end and another electrocardiographic electrode is positioned on a contact surface of the lower end. A battery is directly adhered to the outward facing surface of the mirror image of the upper end.
    Type: Grant
    Filed: May 17, 2021
    Date of Patent: September 20, 2022
    Assignee: Bardy Diagnostics, Inc.
    Inventors: Jon Mikalson Bishay, Jason Felix, Gust H. Bardy, Joshua Djon Green, Jared Brandon Floyd
  • Publication number: 20220218258
    Abstract: An insertable cardiac monitor (ICM) with induction-based recharging capabilities and a transmitting coil for recharging the same are disclosed. The length of the monitoring performed by the ICM is extended and the functionality of the ICM enhanced, by including an internal energy harvesting module that allows for charging the ICM at a high speed without burning the patient or overheating components of the ICM. Internally, the energy harvesting module includes at least two overlapping receiving coils that are spaced to be orthogonal to each other and that have a tilt angle of substantially 45°. Such overlapping wire combination allows to minimize mutual inductance of the solenoid coils and increase the rate at which energy can be provided to the energy harvesting module. Further, the rate at which the energy is transmitted from the outside can be increased by defining in a transmitting coil a substantially triangular gap.
    Type: Application
    Filed: January 10, 2022
    Publication date: July 14, 2022
    Inventors: Jason Felix, Joshua Djon Green, Gust H. Bardy, Henry James Millican
  • Publication number: 20210401371
    Abstract: A subcutaneous insertable cardiac monitor (ICM) for use in performing long term electrocardiographic (ECG) monitoring is disclosed. The length of the monitoring performed by the ICM is extended, potentially for a life time of the patient, and the functionality of the ICM is enhanced, including enhancing the rate at which data can be offloaded from the ICM, by including an internal energy harvesting module in the ICM. The energy harvesting module harvests energy from outside the ICM, and provides the harvested energy for powering the circuitry of the ICM, either directly or by recharging a power cell within the ICM. As the circuitry of the ICM requires a low amount of electrical power, the harvested energy can be sufficient to support the functioning of the ICM even when the electrical power stored on the ICM at the time of implantation runs out.
    Type: Application
    Filed: September 13, 2021
    Publication date: December 30, 2021
    Inventors: Jason Felix, Joshua Djon Green, Gust H. Bardy
  • Patent number: 11116451
    Abstract: A P-wave centric subcutaneous insertable cardiac monitor (ICM) for use in performing long term electrocardiographic (ECG) monitoring is disclosed. The length of the monitoring performed by the ICM is extended, potentially for a life time of the patient, and the functionality of the ICM is enhanced, by including an internal energy harvesting module in the ICM. The energy harvesting module harvests energy from outside the ICM, and provides the harvested energy for powering the circuitry of the ICM, either directly or by recharging a power cell within the ICM. As the circuitry of the ICM requires a low amount of electrical power, the harvested energy can be sufficient to support the functioning of the ICM even when the electrical power stored on the ICM at the time of implantation runs out.
    Type: Grant
    Filed: July 2, 2020
    Date of Patent: September 14, 2021
    Assignee: BARDY DIAGNOSTICS, INC.
    Inventors: Jason Felix, Joshua Djon Green, Gust H. Bardy
  • Publication number: 20210267526
    Abstract: An extended wear electrocardiography patch is provided. An integrated flexible circuit includes a single piece of material and has an upper end and a lower end opposite the upper end. A mirror image of the upper end extends from at least a portion of one side of the upper end and folds over the upper end. One circuit trace is positioned on the upper end and one circuit trace is positioned on the lower end. Electrical pads are located on a contact surface of the upper end and on an outward facing surface of the mirror image of the upper end. An electrocardiographic electrode is positioned on the contact surface of the upper end and another electrocardiographic electrode is positioned on a contact surface of the lower end. A battery is directly adhered to the outward facing surface of the mirror image of the upper end.
    Type: Application
    Filed: May 17, 2021
    Publication date: September 2, 2021
    Inventors: Jon Mikalson Bishay, Jason Felix, Gust H. Bardy, Joshua Djon Green, Jared Brandon Floyd
  • Patent number: 11006883
    Abstract: An extended wear electrocardiography and physiological sensor monitor is provided. An electrode patch includes an integrated flexible circuit having a single piece of material that includes a longitudinal midsection between upper and lower ends and a mirror image shape of the upper end extending from at least a portion of one side of the upper end that runs substantially parallel to the midsection and folds over the upper end. A receptacle is adhered on an outward surface of the mirror image when the integrated circuit is folded over the upper end. One electrode is positioned on a contact surface of the integrated circuit on the upper end and another electrode is positioned on the contact surface on the lower end. A battery is directly adhered to the outward surface of the mirror image and positioned under the receptacle. A monitor is configured to be removably secured in the receptacle.
    Type: Grant
    Filed: October 7, 2019
    Date of Patent: May 18, 2021
    Assignee: Bardy Diagnostics, Inc.
    Inventors: Jon Mikalson Bishay, Jason Felix, Gust H. Bardy, Joshua Djon Green, Jared Brandon Floyd
  • Publication number: 20210127973
    Abstract: An implantable medical device is disclosed. A housing includes a hollow body forming a first electrode on an outer surface with end caps affixed to opposite ends, one end cap forming a second electrode. A microcontroller circuit is provided and includes a microcontroller operable under program instructions stored within a non-volatile memory device. An analog front end is interfaced to the electrodes to sense electrocardiographic signals. A transceiver circuit is operable to wirelessly communicate with an external data device. The program instructions define instructions to continuously sample the electrocardiographic signals into the non-volatile memory device and to offload the non-volatile memory device to the external data device. A diagnostic overread of the samples can be performed using medical diagnostic criteria and medical care initiated with one of pre-identified care providers based on the overread.
    Type: Application
    Filed: January 11, 2021
    Publication date: May 6, 2021
    Inventors: Jason Felix, Joshua Djon Green, Corey B. Williamson, Gust H. Bardy
  • Publication number: 20210030300
    Abstract: An extended wear electrocardiography patch is provided. A flexible backing is formed of an elongated strip of stretchable material. An electrocardiographic electrode is affixed to and conductively exposed on a contact surface of each end of the elongated strip. A flexible circuit is affixed on each end of the elongated strip. A non-conductive receptacle is adhered on one of the ends of the elongated strip on a surface opposite the contact surface and removably receives an electrocardiography monitor operable to obtain electrocardiographic signals. A physiological sensor is provided with the electrocardiography monitor or on the flexible backing. Memory is provided on the flexible backing and is programmed with a sampling rate to instruct the physiological sensor to obtain readings of physiological data. A battery is positioned on one end of the flexible backing to provide power to one or more of the physiological sensors and the electrocardiography monitor.
    Type: Application
    Filed: October 19, 2020
    Publication date: February 4, 2021
    Inventors: Jason Felix, Gust H. Bardy, Jon Mikalson Bishay, Joshua Djon Green
  • Publication number: 20210000418
    Abstract: A P-wave centric subcutaneous insertable cardiac monitor (ICM) for use in performing long term electrocardiographic (ECG) monitoring is disclosed. The length of the monitoring performed by the ICM is extended, potentially for a life time of the patient, and the functionality of the ICM is enhanced, by including an internal energy harvesting module in the ICM. The energy harvesting module harvests energy from outside the ICM, and provides the harvested energy for powering the circuitry of the ICM, either directly or by recharging a power cell within the ICM. As the circuitry of the ICM requires a low amount of electrical power, the harvested energy can be sufficient to support the functioning of the ICM even when the electrical power stored on the ICM at the time of implantation runs out.
    Type: Application
    Filed: July 2, 2020
    Publication date: January 7, 2021
    Inventors: Jason Felix, Joshua Djon Green, Gust H. Bardy
  • Publication number: 20210000345
    Abstract: An implantable medical device is disclosed. A housing includes a hollow body forming a first electrode on an outer surface with end caps affixed to opposite ends, one end cap forming a second electrode. A microcontroller circuit is provided and includes a microcontroller operable under program instructions stored within a non-volatile memory device. An analog front end is interfaced to the electrodes to sense electrocardiographic signals. A transceiver circuit is operable to wirelessly communicate with an external data device. The program instructions define instructions to continuously sample the electrocardiographic signals into the non-volatile memory device and to offload the non-volatile memory device to the external data device. A receiving coil and a charging circuit are operable to charge an onboard power source for the microcontroller circuit.
    Type: Application
    Filed: July 15, 2020
    Publication date: January 7, 2021
    Inventors: Jason Felix, Joshua Djon Green, Corey B. Williamson, Gust H. Bardy
  • Patent number: 10806360
    Abstract: An extended wear electrocardiography patch is provided. A flexible backing includes an elongated strip of stretchable material. An electrocardiographic electrode is respectively affixed to and conductively exposed on each end of the elongated strip. A flexible circuit is affixed on each end to the elongated strip and includes a pair of circuit traces each originating within one of the ends of the elongated strip and coupled to one of the electrocardiographic electrodes. A non-conductive receptacle securely adhered on the one end of the elongated strip and includes electrode terminals aligned to interface the pair of circuit traces to an electrocardiography monitor to obtain electrocardiographic signals through the electrocardiographic electrodes.
    Type: Grant
    Filed: December 3, 2018
    Date of Patent: October 20, 2020
    Assignee: Bardy Diagnostics, Inc.
    Inventors: Jason Felix, Gust H. Bardy, Jon Mikalson Bishay, Joshua Djon Green
  • Publication number: 20200037915
    Abstract: An extended wear electrocardiography and physiological sensor monitor is provided. An electrode patch includes an integrated flexible circuit having a single piece of material that includes a longitudinal midsection between upper and lower ends and a mirror image shape of the upper end extending from at least a portion of one side of the upper end that runs substantially parallel to the midsection and folds over the upper end. A receptacle is adhered on an outward surface of the mirror image when the integrated circuit is folded over the upper end. One electrode is positioned on a contact surface of the integrated circuit on the upper end and another electrode is positioned on the contact surface on the lower end. A battery is directly adhered to the outward surface of the mirror image and positioned under the receptacle. A monitor is configured to be removably secured in the receptacle.
    Type: Application
    Filed: October 7, 2019
    Publication date: February 6, 2020
    Inventors: Jon Mikalson Bishay, Jason Felix, Gust H. Bardy, Joshua Djon Green, Jared Brandon Floyd