Patents by Inventor Joshua Dudney

Joshua Dudney has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230363894
    Abstract: A paravalvular leak resistant prosthetic heart valve system including a stent frame, a valve structure and a sealing mechanism. The stent frame has a surface. The valve structure is associated with the stent frame. The sealing mechanism at least partially extends over the surface of the stent frame. The sealing mechanism includes at least one semi-permeable membrane and an osmotic gradient driving material.
    Type: Application
    Filed: July 12, 2023
    Publication date: November 16, 2023
    Inventors: Wei Wang, Joshua Dudney, Kshitija P. Garde, Laura McKinley, Benjamin Wong
  • Patent number: 11766325
    Abstract: Devices for, and methods of, compressing a stented prosthetic heart valve are disclosed. The method including inserting a stented prosthetic heart valve having a self-expandable stent frame into a container, initiating a cooling element in the container, transferring heat through a thermal conductor to cool an interior of the container, reducing a temperature of the self-expandable stent frame while located within the container to a critical temperature of not greater than 8° C., and compressing an outer diameter of the stented prosthetic heart valve while the stented prosthetic heart valve is at the critical temperature.
    Type: Grant
    Filed: May 18, 2022
    Date of Patent: September 26, 2023
    Assignee: MEDTRONIC VASCULAR, INC.
    Inventors: Wei Wang, Benjamin Wong, Laura McKinley, Joshua Dudney, Tracey Tien, Karl Olney
  • Patent number: 11737866
    Abstract: A paravalvular leak resistant prosthetic heart valve system including a stent frame, a valve structure and a sealing mechanism. The stent frame has a surface. The valve structure is associated with the stent frame. The sealing mechanism at least partially extends over the surface of the stent frame. The sealing mechanism includes at least one semi-permeable membrane and an osmotic gradient driving material.
    Type: Grant
    Filed: August 2, 2021
    Date of Patent: August 29, 2023
    Assignee: MEDTRONIC, INC.
    Inventors: Wei Wang, Joshua Dudney, Kshitija P. Garde, Laura McKinley, Benjamin Wong
  • Publication number: 20220273425
    Abstract: Devices for, and methods of, compressing a stented prosthetic heart valve are disclosed. The method including inserting a stented prosthetic heart valve having a self-expandable stent frame into a container, initiating a cooling element in the container, transferring heat through a thermal conductor to cool an interior of the container, reducing a temperature of the self-expandable stent frame while located within the container to a critical temperature of not greater than 8° C., and compressing an outer diameter of the stented prosthetic heart valve while the stented prosthetic heart valve is at the critical temperature.
    Type: Application
    Filed: May 18, 2022
    Publication date: September 1, 2022
    Applicant: Medtronic Vascular, Inc.
    Inventors: Wei Wang, Benjamin Wong, Laura McKinley, Joshua Dudney, Tracey Tien, Karl Olney
  • Publication number: 20220257360
    Abstract: A “dry” packaging in which a prosthetic heart valve is packaged within a container with hydrogel that can be provided in many forms. Certain embodiments include hydrogel that is preloaded with glycerol or the like. The hydrogel regulates the humidity within the container through a diffusion-driven mechanism if a gradient of humidity between the inside and the outside of the hydrogel exists. Humidity regulation is important to prevent the tissue of the valve structure from drying out. When the partially-hydrated hydrogel is present within container, which is saturated with air of a predefined humidity, the water molecules from the air will be absorbed by the hydrogel if the air humidity is high (i.e. when the thermodynamics favor hydrogel hydration) or vice versa. Various embodiments are configured to also house at least a portion of a delivery device for delivering the prosthetic heart valve.
    Type: Application
    Filed: May 3, 2022
    Publication date: August 18, 2022
    Applicant: Medtronic Vascular, Inc.
    Inventors: Raymond Ryan, David Clarke, Kshitija Garde, Ya Guo, Benjamin Wong, Yogesh Darekar, Luke Lehmann, Wei Wang, Laura McKinley, Paul Devereux, Joshua Dudney, Tracey Tien, Karl Olney
  • Patent number: 11364115
    Abstract: Methods of compressing a stented prosthetic heart valve are disclosed. The method including inserting a stented prosthetic heart valve having a self-expandable stent frame into a container, initiating a cooling element in the container, transferring heat through a thermal conductor to cool an interior of the container, reducing a temperature of the self-expandable stent frame while located within the container to a critical temperature of not greater than 8° C., and compressing an outer diameter of the stented prosthetic heart valve while the stented prosthetic heart valve is at the critical temperature.
    Type: Grant
    Filed: April 21, 2020
    Date of Patent: June 21, 2022
    Assignee: Medtronic Vascular, Inc.
    Inventors: Wei Wang, Benjamin Wong, Laura McKinley, Joshua Dudney, Tracey Tien, Karl Olney
  • Patent number: 11344399
    Abstract: A “dry” packaging in which a prosthetic heart valve is packaged within a container with hydrogel that can be provided in many forms. Certain embodiments include hydrogel that is preloaded with glycerol or the like. The hydrogel regulates the humidity within the container through a diffusion-driven mechanism if a gradient of humidity between the inside and the outside of the hydrogel exists. Humidity regulation is important to prevent the tissue of the valve structure from drying out. When the partially-hydrated hydrogel is present within container, which is saturated with air of a predefined humidity, the water molecules from the air will be absorbed by the hydrogel if the air humidity is high (i.e. when the thermodynamics favor hydrogel hydration) or vice versa. Various embodiments are configured to also house at least a portion of a delivery device for delivering the prosthetic heart valve.
    Type: Grant
    Filed: December 8, 2020
    Date of Patent: May 31, 2022
    Assignee: Medtronic Vascular, Inc.
    Inventors: Raymond Ryan, David Clarke, Kshitija Garde, Ya Guo, Benjamin Wong, Yogesh Darekar, Luke Lehmann, Wei Wang, Laura McKinley, Paul Devereux, Joshua Dudney, Tracey Tien, Karl Olney
  • Publication number: 20210353409
    Abstract: A paravalvular leak resistant prosthetic heart valve system including a stent frame, a valve structure and a sealing mechanism. The stent frame has a surface. The valve structure is associated with the stent frame. The sealing mechanism at least partially extends over the surface of the stent frame. The sealing mechanism includes at least one semi-permeable membrane and an osmotic gradient driving material.
    Type: Application
    Filed: August 2, 2021
    Publication date: November 18, 2021
    Applicant: Medtronic, Inc.
    Inventors: Wei Wang, Joshua Dudney, Kshitija P. Garde, Laura McKinley, Benjamin Wong
  • Patent number: 11096780
    Abstract: A paravalvular leak resistant prosthetic heart valve system including a stent frame, a valve structure and a sealing mechanism. The stent frame has a surface. The valve structure is associated with the stent frame. The sealing mechanism at least partially extends over the surface of the stent frame. The sealing mechanism includes at least one semi-permeable membrane and an osmotic gradient driving material.
    Type: Grant
    Filed: May 9, 2019
    Date of Patent: August 24, 2021
    Assignee: Medtronic, Inc.
    Inventors: Wei Wang, Joshua Dudney, Kshitija P. Garde, Laura McKinley, Benjamin Wong
  • Publication number: 20210113320
    Abstract: A “dry” packaging in which a prosthetic heart valve is packaged within a container with hydrogel that can be provided in many forms. Certain embodiments include hydrogel that is preloaded with glycerol or the like. The hydrogel regulates the humidity within the container through a diffusion-driven mechanism if a gradient of humidity between the inside and the outside of the hydrogel exists. Humidity regulation is important to prevent the tissue of the valve structure from drying out. When the partially-hydrated hydrogel is present within container, which is saturated with air of a predefined humidity, the water molecules from the air will be absorbed by the hydrogel if the air humidity is high (i.e. when the thermodynamics favor hydrogel hydration) or vice versa. Various embodiments are configured to also house at least a portion of a delivery device for delivering the prosthetic heart valve.
    Type: Application
    Filed: December 8, 2020
    Publication date: April 22, 2021
    Applicant: Medtronic Vascular, Inc.
    Inventors: Raymond Ryan, David Clarke, Kshitija Garde, Ya Guo, Benjamin Wong, Yogesh Darekar, Luke Lehmann, Wei Wang, Laura McKinley, Paul Devereux, Joshua Dudney, Tracey Tien, Karl Olney
  • Patent number: 10888408
    Abstract: A “dry” packaging in which a prosthetic heart valve is packaged within a container with hydrogel that can be provided in many forms. Certain embodiments include hydrogel that is preloaded with glycerol or the like. The hydrogel regulates the humidity within the container through a diffusion-driven mechanism if a gradient of humidity between the inside and the outside of the hydrogel exists. Humidity regulation is important to prevent the tissue of the valve structure from drying out. When the partially-hydrated hydrogel is present within container, which is saturated with air of a predefined humidity, the water molecules from the air will be absorbed by the hydrogel if the air humidity is high (i.e. when the thermodynamics favor hydrogel hydration) or vice versa. Various embodiments are configured to also house at least a portion of a delivery device for delivering the prosthetic heart valve.
    Type: Grant
    Filed: May 2, 2018
    Date of Patent: January 12, 2021
    Assignee: Medtronic Vascular, Inc.
    Inventors: Raymond Ryan, David Clarke, Kshitija Garde, Ya Guo, Benjamin Wong, Yogesh Darekar, Luke Lehmann, Wei Wang, Laura McKinley, Paul Devereux, Joshua Dudney, Tracey Tien, Karl Olney
  • Publication number: 20200246138
    Abstract: Methods of compressing a stented prosthetic heart valve are disclosed. The method including inserting a stented prosthetic heart valve having a self-expandable stent frame into a container, initiating a cooling element in the container, transferring heat through a thermal conductor to cool an interior of the container, reducing a temperature of the self-expandable stent frame while located within the container to a critical temperature of not greater than 8° C., and compressing an outer diameter of the stented prosthetic heart valve while the stented prosthetic heart valve is at the critical temperature.
    Type: Application
    Filed: April 21, 2020
    Publication date: August 6, 2020
    Applicant: Medtronic Vascular, Inc.
    Inventors: Wei Wang, Benjamin Wong, Laura McKinley, Joshua Dudney, Tracey Tien, Karl Olney
  • Patent number: 10660748
    Abstract: Conditioned bioprosthetic tissues for forming prosthetic valves including a sheet of bioprosthetic tissue having a first major surface and a second major surface. The first major surface has a pattern including at least one depressed region and areas of relief adjacent to the at least one depressed region. The at least one depressed region has a first tissue density that is greater than a second tissue density of the areas of relief.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: May 26, 2020
    Assignee: Medtronic Vascular, Inc.
    Inventors: Laura McKinley, Benjamin Wong, Wei Wang, Elliot Howard, Joshua Dudney, Tracey Tien, Karl Olney
  • Patent number: 10660746
    Abstract: Methods of compressing a stented prosthetic heart valve are disclosed. The method including inserting a stented prosthetic heart valve having a self-expandable stent frame into a container, initiating a cooling element in the container, transferring heat through a thermal conductor to cool an interior of the container, reducing a temperature of the self-expandable stent frame while located within the container to a critical temperature of not greater than 8° C., and compressing an outer diameter of the stented prosthetic heart valve while the stented prosthetic heart valve is at the critical temperature.
    Type: Grant
    Filed: September 6, 2018
    Date of Patent: May 26, 2020
    Assignee: Medtronic Vascular, Inc.
    Inventors: Wei Wang, Benjamin Wong, Laura McKinley, Joshua Dudney, Tracey Tien, Karl Olney
  • Publication number: 20190269504
    Abstract: A paravalvular leak resistant prosthetic heart valve system including a stent frame, a valve structure and a sealing mechanism. The stent frame has a surface. The valve structure is associated with the stent frame. The sealing mechanism at least partially extends over the surface of the stent frame. The sealing mechanism includes at least one semi-permeable membrane and an osmotic gradient driving material.
    Type: Application
    Filed: May 9, 2019
    Publication date: September 5, 2019
    Applicant: Medtronic, Inc.
    Inventors: Wei Wang, Joshua Dudney, Kshitija P. Garde, Laura McKinley, Benjamin Wong
  • Patent number: 10321987
    Abstract: A paravalvular leak resistant prosthetic heart valve system including a stent frame, a valve structure and a sealing mechanism. The stent frame has a surface. The valve structure is associated with the stent frame. The sealing mechanism at least partially extends over the surface of the stent frame. The sealing mechanism includes at least one semi-permeable membrane and an osmotic gradient driving material.
    Type: Grant
    Filed: April 23, 2014
    Date of Patent: June 18, 2019
    Assignee: Medtronic, Inc.
    Inventors: Wei Wang, Joshua Dudney, Kshitija P. Garde, Laura McKinley, Benjamin Wong
  • Publication number: 20190038402
    Abstract: Methods of compressing a stented prosthetic heart valve are disclosed. The method including inserting a stented prosthetic heart valve having a self-expandable stent frame into a container, initiating a cooling element in the container, transferring heat through a thermal conductor to cool an interior of the container, reducing a temperature of the self-expandable stent frame while located within the container to a critical temperature of not greater than 8° C., and compressing an outer diameter of the stented prosthetic heart valve while the stented prosthetic heart valve is at the critical temperature.
    Type: Application
    Filed: September 6, 2018
    Publication date: February 7, 2019
    Inventors: Wei Wang, Benjamin Wong, Laura McKinley, Joshua Dudney, Tracey Tien, Karl Olney
  • Publication number: 20180318060
    Abstract: A “dry” packaging in which a prosthetic heart valve is packaged within a container with hydrogel that can be provided in many forms. Certain embodiments include hydrogel that is preloaded with glycerol or the like. The hydrogel regulates the humidity within the container through a diffusion-driven mechanism if a gradient of humidity between the inside and the outside of the hydrogel exists. Humidity regulation is important to prevent the tissue of the valve structure from drying out. When the partially-hydrated hydrogel is present within container, which is saturated with air of a predefined humidity, the water molecules from the air will be absorbed by the hydrogel if the air humidity is high (i.e. when the thermodynamics favor hydrogel hydration) or vice versa. Various embodiments are configured to also house at least a portion of a delivery device for delivering the prosthetic heart valve.
    Type: Application
    Filed: May 2, 2018
    Publication date: November 8, 2018
    Inventors: Raymond Ryan, David Clarke, Kshitija Garde, Ya Guo, Benjamin Wong, Yogesh Darekar, Luke Lehmann, Wei Wang, Laura McKinley, Paul Devereux, Joshua Dudney, Tracey Tien, Karl Olney
  • Patent number: 10092398
    Abstract: Methods of compressing a stented prosthetic heart valve are disclosed. The method including inserting a stented prosthetic heart valve having a self-expandable stent frame into a container, initiating a cooling element in the container, transferring heat through a thermal conductor to cool an interior of the container, reducing a temperature of the self-expandable stent frame while located within the container to a critical temperature of not greater than 8° C., and compressing an outer diameter of the stented prosthetic heart valve while the stented prosthetic heart valve is at the critical temperature.
    Type: Grant
    Filed: January 7, 2016
    Date of Patent: October 9, 2018
    Assignee: Medtronic Vascular, Inc.
    Inventors: Wei Wang, Benjamin Wong, Laura McKinley, Joshua Dudney, Tracey Tien, Karl Olney
  • Publication number: 20180243089
    Abstract: Conditioned bioprosthetic tissues for forming prosthetic valves including a sheet of bioprosthetic tissue having a first major surface and a second major surface. The first major surface has a pattern including at least one depressed region and areas of relief adjacent to the at least one depressed region. The at least one depressed region has a first tissue density that is greater than a second tissue density of the areas of relief.
    Type: Application
    Filed: April 27, 2018
    Publication date: August 30, 2018
    Inventors: Laura McKinley, Benjamin Wong, Wei Wang, Elliot Howard, Joshua Dudney, Tracey Tien, Karl Olney