Patents by Inventor Joshua Goldberger

Joshua Goldberger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230311097
    Abstract: Disclosed herein are catalysts and methods of making and use thereof, wherein the catalysts comprises a layered inter-metallic compound.
    Type: Application
    Filed: June 25, 2021
    Publication date: October 5, 2023
    Inventors: Joshua Goldberger, Kelsey Hodge
  • Publication number: 20190006605
    Abstract: The present invention provides novel two-dimensional van der Waals materials and stacks of those materials. Also provided are methods of making and using such materials.
    Type: Application
    Filed: August 10, 2018
    Publication date: January 3, 2019
    Inventors: Joshua Goldberger, Shishi Jiang, Elisabeth Bianco
  • Patent number: 10074814
    Abstract: The present invention provides novel two-dimensional van der Waals materials and stacks of those materials. Also provided are methods of making and using such materials.
    Type: Grant
    Filed: April 3, 2014
    Date of Patent: September 11, 2018
    Assignee: OHIO STATE INNOVATION FOUNDATION
    Inventors: Joshua Goldberger, Shishi Jiang, Elisabeth Bianco
  • Publication number: 20170200906
    Abstract: The present invention provides novel two-dimensional van der Waals materials and stacks of those materials. Also provided are methods of making and using such materials.
    Type: Application
    Filed: April 3, 2014
    Publication date: July 13, 2017
    Inventors: Joshua Goldberger, Shishi Jiang, Elisabeth Bianco
  • Patent number: 8093628
    Abstract: Fluidic nanotube devices are described in which a hydrophilic, non-carbon nanotube, has its ends fluidly coupled to reservoirs. Source and drain contacts are connected to opposing ends of the nanotube, or within each reservoir near the opening of the nanotube. The passage of molecular species can be sensed by measuring current flow (source-drain, ionic, or combination). The tube interior can be functionalized by joining binding molecules so that different molecular species can be sensed by detecting current changes. The nanotube may be a semiconductor, wherein a tubular transistor is formed. A gate electrode can be attached between source and drain to control current flow and ionic flow. By way of example an electrophoretic array embodiment is described, integrating MEMs switches.
    Type: Grant
    Filed: February 7, 2008
    Date of Patent: January 10, 2012
    Assignee: The Regents of the University of California
    Inventors: Peidong Yang, Rongrui He, Joshua Goldberger, Rong Fan, Yiying Wu, Deyu Li, Arun Majumdar
  • Publication number: 20110233512
    Abstract: Vertical integrated field effect transistor circuits and methods are described which are fabricated from Silicon, Germanium, or a combination Silicon and Germanium based on nanowires grown in place on the substrate. By way of example, vertical integrated transistors are formed from one or more nanowires which have been insulated, had a gate deposited thereon, and to which a drain is coupled to the exposed tips of one or more of the nanowires. The nanowires are preferably grown over a surface or according to a desired pattern in response to dispersing metal nanoclusters over the desired portions of the substrate. In one preferred implementation, SiCl4 is utilized as a gas phase precursor during the nanowire growth process. In place nanowire growth is also taught in conjunction with structures, such as trenches, while bridging forms of nanowires are also described.
    Type: Application
    Filed: January 16, 2008
    Publication date: September 29, 2011
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Peidong Yang, Joshua Goldberger, Allon Hochbaum, Rong Fan, Rongrui He
  • Publication number: 20110168968
    Abstract: Fluidic nanotube devices are described in which a hydrophilic, non-carbon nanotube, has its ends fluidly coupled to reservoirs. Source and drain contacts are connected to opposing ends of the nanotube, or within each reservoir near the opening of the nanotube. The passage of molecular species can be sensed by measuring current flow (source-drain, ionic, or combination). The tube interior can be functionalized by joining binding molecules so that different molecular species can be sensed by detecting current changes. The nanotube may be a semiconductor, wherein a tubular transistor is formed. A gate electrode can be attached between source and drain to control current flow and ionic flow. By way of example an electrophoretic array embodiment is described, integrating MEMs switches.
    Type: Application
    Filed: February 7, 2008
    Publication date: July 14, 2011
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Peidong Yang, Rongrui He, Joshua Goldberger, Rong Fan, Yiying Wu, Deyu Li, Arun Majumdar
  • Patent number: 7781317
    Abstract: A method for the non-catalytic growth of nanowires is provided. The method includes a reaction chamber with the chamber having an inlet end, an exit end and capable of being heated to an elevated temperature. A carrier gas with a flow rate is allowed to enter the reaction chamber through the inlet end and exit the chamber through the exit end. Upon passing through the chamber the carrier gas comes into contact with a precursor which is heated within the reaction chamber. A collection substrate placed downstream from the precursor allows for the formation and growth of nanowires thereon without the use of a catalyst. A second embodiment of the present invention is comprised of a reaction chamber, a carrier gas, a precursor target, a laser beam and a collection substrate. The carrier gas with a flow rate and a gas pressure is allowed to enter the reaction chamber through an inlet end and exit the reaction chamber through the exit end.
    Type: Grant
    Filed: January 3, 2007
    Date of Patent: August 24, 2010
    Assignees: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Joshua Goldberger, Melissa Fardy, Oded Rabin, Allon Hochbaum, Minjuan Zhang, Peidong Yang
  • Publication number: 20080157031
    Abstract: A method for the non-catalytic growth of nanowires is provided. The method includes a reaction chamber with the chamber having an inlet end, an exit end and capable of being heated to an elevated temperature. A carrier gas with a flow rate is allowed to enter the reaction chamber through the inlet end and exit the chamber through the exit end. Upon passing through the chamber the carrier gas comes into contact with a precursor which is heated within the reaction chamber. A collection substrate placed downstream from the precursor allows for the formation and growth of nanowires thereon without the use of a catalyst. A second embodiment of the present invention is comprised of a reaction chamber, a carrier gas, a precursor target, a laser beam and a collection substrate. The carrier gas with a flow rate and a gas pressure is allowed to enter the reaction chamber through an inlet end and exit the reaction chamber through the exit end.
    Type: Application
    Filed: January 3, 2007
    Publication date: July 3, 2008
    Applicants: Toyota Engineering & Manufacturing North America, Inc.
    Inventors: Joshua Goldberger, Melissa Fardy, Oded Rabin, Allon Hochbaum, Minjuan Zhang, Peidong Yang
  • Patent number: 7355216
    Abstract: Fluidic nanotube devices are described in which a hydrophilic, non-carbon nanotube, has its ends fluidly coupled to reservoirs. Source and drain contacts are connected to opposing ends of the nanotube, or within each reservoir near the opening of the nanotube. The passage of molecular species can be sensed by measuring current flow (source-drain, ionic, or combination). The tube interior can be functionalized by joining binding molecules so that different molecular species can be sensed by detecting current changes. The nanotube may be a semiconductor, wherein a tubular transistor is formed. A gate electrode can be attached between source and drain to control current flow and ionic flow. By way of example an electrophoretic array embodiment is described, integrating MEMs switches.
    Type: Grant
    Filed: April 8, 2004
    Date of Patent: April 8, 2008
    Assignee: The Regents of the University of California
    Inventors: Peidong Yang, Rongrui He, Joshua Goldberger, Rong Fan, Yiying Wu, Deyu Li, Arun Majumdar
  • Patent number: 7211143
    Abstract: Methods of fabricating uniform nanotubes are described in which nanotubes were synthesized as sheaths over nanowire templates, such as using a chemical vapor deposition process. For example, single-crystalline zinc oxide (ZnO) nanowires are utilized as templates over which gallium nitride (GaN) is epitaxially grown. The ZnO templates are then removed, such as by thermal reduction and evaporation. The completed single-crystalline GaN nanotubes preferably have inner diameters ranging from 30 nm to 200 nm, and wall thicknesses between 5 and 50 nm. Transmission electron microscopy studies show that the resultant nanotubes are single-crystalline with a wurtzite structure, and are oriented along the <001> direction. The present invention exemplifies single-crystalline nanotubes of materials with a non-layered crystal structure. Similar “epitaxial-casting” approaches could be used to produce arrays and single-crystalline nanotubes of other solid materials and semiconductors.
    Type: Grant
    Filed: December 8, 2003
    Date of Patent: May 1, 2007
    Assignee: The Regents of the University of California
    Inventors: Peidong Yang, Rongrui He, Joshua Goldberger, Rong Fan, Yi-Ying Wu, Deyu Li, Arun Majumdar
  • Publication number: 20040262636
    Abstract: Fluidic nanotube devices are described in which a hydrophilic, non-carbon nanotube, has its ends fluidly coupled to reservoirs. Source and drain contacts are connected to opposing ends of the nanotube, or within each reservoir near the opening of the nanotube. The passage of molecular species can be sensed by measuring current flow (source-drain, ionic, or combination). The tube interior can be functionalized by joining binding molecules so that different molecular species can be sensed by detecting current changes. The nanotube may be a semiconductor, wherein a tubular transistor is formed. A gate electrode can be attached between source and drain to control current flow and ionic flow. By way of example an electrophoretic array embodiment is described, integrating MEMs switches.
    Type: Application
    Filed: April 8, 2004
    Publication date: December 30, 2004
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Peidong Yang, Rongrui He, Joshua Goldberger, Rong Fan, Yiying Wu, Deyu Li, Arun Majumdar
  • Publication number: 20040175844
    Abstract: Methods of fabricating uniform nanotubes are described in which nanotubes were synthesized as sheaths over nanowire templates, such as using a chemical vapor deposition process. For example, single-crystalline zinc oxide (ZnO) nanowires are utilized as templates over which gallium nitride (GaN) is epitaxially grown. The ZnO templates are then removed, such as by thermal reduction and evaporation. The completed single-crystalline GaN nanotubes preferably have inner diameters ranging from 30 nm to 200 nm, and wall thicknesses between 5 and 50 nm. Transmission electron microscopy studies show that the resultant nanotubes are single-crystalline with a wurtzite structure, and are oriented along the <001> direction. The present invention exemplifies single-crystalline nanotubes of materials with a non-layered crystal structure. Similar “epitaxial-casting” approaches could be used to produce arrays and single-crystalline nanotubes of other solid materials and semiconductors.
    Type: Application
    Filed: December 8, 2003
    Publication date: September 9, 2004
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Peidong Yang, Rongrui He, Joshua Goldberger, Rong Fan, Yi-Ying Wu, Deyu Li, Arun Majumdar