Patents by Inventor Joshua Hendrickson

Joshua Hendrickson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11543571
    Abstract: A transmission filter apparatus is provided that includes: (i) a substrate to serve as a foundation for the apparatus; (ii) a layer containing resonant dielectric cavities separated by conductive regions. The dimensions and design of the dielectric cavities, thickness of the layer, and substrate, dielectric and conductive materials are chosen to achieve resonant transmission of selected wavelengths. In a particular one or more embodiments, the layer is one dimensional, i.e. you have dielectric cavities along one axis in the plane that are comparatively infinity long in the parallel plane. In a particular one or more embodiments, the layer is two dimensional, i.e. you have dielectric cavities along both axis in the plane. The dimensions in each plane may or may not be equal. In a specific one or more embodiments, the dielectric cavities are terminated on the top and/or bottom by thin metal films with small apertures or tapers.
    Type: Grant
    Filed: June 16, 2020
    Date of Patent: January 3, 2023
    Assignee: United States of America as represented by the Secretary of the Air Force
    Inventors: Justin W. Cleary, Evan M. Smith, Ricky D. Gibson, Jr., Shivashankar R. Vangala, Joshua Hendrickson, Ivan Avrutsky
  • Publication number: 20210041612
    Abstract: A transmission filter apparatus is provided that includes: (i) a substrate to serve as a foundation for the apparatus; (ii) a layer containing resonant dielectric cavities separated by conductive regions. The dimensions and design of the dielectric cavities, thickness of the layer, and substrate, dielectric and conductive materials are chosen to achieve resonant transmission of selected wavelengths. In a particular one or more embodiments, the layer is one dimensional, i.e. you have dielectric cavities along one axis in the plane that are comparatively infinity long in the parallel plane. In a particular one or more embodiments, the layer is two dimensional, i.e. you have dielectric cavities along both axis in the plane. The dimensions in each plane may or may not be equal. In a specific one or more embodiments, the dielectric cavities are terminated on the top and/or bottom by thin metal films with small apertures or tapers.
    Type: Application
    Filed: June 16, 2020
    Publication date: February 11, 2021
    Inventors: Justin W. Cleary, Evan M. Smith, Ricky D. Gibson, Shivashankar R. Vangala, Joshua Hendrickson, Ivan Avrutsky
  • Patent number: 10892388
    Abstract: An LED structure is formed in a nanobeam on a semiconductor base and includes three nanobeam sections. A central section is the LED and it is formed by a bottom germanium doped layer, a middle germanium-tin layer and a top germanium layer that is doped oppositely from the bottom germanium layer. Left and right germanium nanobeam sections extend outwardly from the left and right ends of the central section. Metal contacts are formed on the top and bottom layers and an electrical circuit is connected to the metal contacts and provides an electrical signal that energizes the middle section and causes it to emit light, some of which is transmitted by the left and right nanobeams. Cylindrical holes are formed in the nanobeam and are sized and spaced apart to form a zero point-defect resonator. The diameters of the holes are reduced as they move further away from the central section in accordance with a Gaussian taper. The LED is configured and dimensioned to have a maximum modulation rate from about 1.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: January 12, 2021
    Assignee: United States of America as represented by the Secretary of Air Force
    Inventors: Joshua Hendrickson, Ricky D. Gibson, Jr.
  • Publication number: 20200288107
    Abstract: A system, method and apparatus for a ghost imager having spatial imaging and high-resolution spectral information of the imaged object. This obviates the lack of spectral content within images obtained via ghost imaging.
    Type: Application
    Filed: March 8, 2019
    Publication date: September 10, 2020
    Inventor: Joshua Hendrickson
  • Publication number: 20200098956
    Abstract: An LED structure is formed in a nanobeam on a semiconductor base and includes three nanobeam sections. A central section is the LED and it is formed by a bottom germanium doped layer, a middle germanium-tin layer and a top germanium layer that is doped oppositely from the bottom germanium layer. Left and right germanium nanobeam sections extend outwardly from the left and right ends of the central section. Metal contacts are formed on the top and bottom layers and an electrical circuit is connected to the metal contacts and provides an electrical signal that energizes the middle section and causes it to emit light, some of which is transmitted by the left and right nanobeams. Cylindrical holes are formed in the nanobeam and are sized and spaced apart to form a zero point-defect resonator. The diameters of the holes are reduced as they move further away from the central section in accordance with a Gaussian taper. The LED is configured and dimensioned to have a maximum modulation rate from about 1.
    Type: Application
    Filed: April 16, 2019
    Publication date: March 26, 2020
    Inventors: Joshua Hendrickson, Ricky D. Gibson, JR.
  • Patent number: 10422699
    Abstract: A hybrid plasmonic-pyroelectric detector and laser detection system is disclosed. The hybrid plasmonic-pyroelectric detector includes a substrate and a refractory ground plane mounted on a surface of the substrate. A plasmonic array defines a plurality of apertures formed in the array. A highly-oriented pyroelectric layer is mounted on a surface of the ground plane and a surface of the plasmonic array. The plasmonic array is constructed and arranged to select particular wavelengths. Alternatively, a semiconductor or an avalanche material may be used. A pair of electrode contacts are coupled to each of the plasmonic array and the refractory ground plane. A laser detection system in accordance with the disclosure includes a mechanical chopper, a lens, a folding mirror, and a chip carrier for mounting the hybrid plasmonic-pyroelectric detector.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: September 24, 2019
    Assignee: United States of America as represented by the Secretary of the Air Force
    Inventors: Jarrett H. Vella, Joshua Hendrickson, Justin W. Cleary, Shivashankar R. Vangala