Patents by Inventor Joshua I. Cutler

Joshua I. Cutler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10675615
    Abstract: The disclosure relate generally to structures, forms, and monoliths, and methods of preparing the same. This disclosure can produce uniform structured passageways or channels of active material, including adsorbent or catalyst, by imprinting or molding features into a paste on a support that can be subsequently assembled into a gas or liquid treating structure, i.e. a monolith. The paste, which can include an active material, binder, and other potential additives, can be applied to the support or pushed through a support (as in a mesh) as a thin film. The paste can be imprinted, stamped, shaped or otherwise handled to give features of desired height, shape, width, and positioning. When stacked or rolled, the features of one layer contact a subsequent layer, which seal to form passageways. The resulting structure can have high cell-density (>1000 cells per square inch) and a large volume fraction of active material.
    Type: Grant
    Filed: April 29, 2019
    Date of Patent: June 9, 2020
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Tracy A. Fowler, Thomas M. Smith, Joshua I. Cutler, Jenna L. Walp
  • Publication number: 20200031737
    Abstract: Disclosed are processes for conversion of a feedstock comprising C8+ aromatic hydrocarbons to lighter aromatic products in which the feedstock and optionally hydrogen are contacted in the presence of the catalyst composition under conversion conditions effective to dealkylate and transalkylate said C8+ aromatic hydrocarbons to produce said lighter aromatic products comprising benzene, toluene and xylene. The catalyst composition comprises a zeolite, a first metal, and a second metal, and is treated with a source of sulfur and/or a source of steam.
    Type: Application
    Filed: September 28, 2017
    Publication date: January 30, 2020
    Inventors: Christine N. Elias, Wenyih F. Lai, Hari Nair, Joshua I. Cutler, Chuansheng Bai, Nicholas S. Rollman
  • Publication number: 20200031740
    Abstract: Disclosed are processes for conversion of a feedstock comprising C8+ aromatic hydrocarbons to lighter aromatic products in which the feedstock and optionally hydrogen are contacted in the presence of a first and a second catalyst composition under conversion conditions effective to produce said lighter aromatic products comprising benzene, toluene and xylene. In the process, the C8+ aromatic hydrocarbons are dealkylated to form C6-C7 aromatic hydrocarbon and the C2+ olefins formed are saturated. The remaining C8+ aromatic hydrocarbons are transalkylated with the C6-C7 aromatic hydrocarbon. The first and second catalyst compositions each comprise a zeolite, a first metal, and optionally a second metal, and are treated with a source of sulfur and/or a source of steam.
    Type: Application
    Filed: September 28, 2017
    Publication date: January 30, 2020
    Inventors: Christine N. Elias, Wenyih F. Lai, Hari Nair, Joshua I. Cutler, Chuansheng Bai, Nicholas S. Rollman
  • Patent number: 10512893
    Abstract: Structured adsorbent beds comprising a high cell density substrate, such as greater than about 1040 cpsi, and a coating comprising adsorbent particles, such as DDR and a binder, such as SiO2 are provided herein. Methods of preparing the structured adsorbent bed and gas separation processes using the structured adsorbent bed are also provided herein.
    Type: Grant
    Filed: July 27, 2017
    Date of Patent: December 24, 2019
    Assignee: ExxonMobil Upstream Research Company
    Inventors: John F. Brody, Daniel P. Leta, Tracy Alan Fowler, Stephanie A. Freeman, Joshua I. Cutler
  • Publication number: 20190255521
    Abstract: The disclosure relate generally to structures, forms, and monoliths, and methods of preparing the same. This disclosure can produce uniform structured passageways or channels of active material, including adsorbent or catalyst, by imprinting or molding features into a paste on a support that can be subsequently assembled into a gas or liquid treating structure, i.e. a monolith. The paste, which can include an active material, binder, and other potential additives, can be applied to the support or pushed through a support (as in a mesh) as a thin film. The paste can be imprinted, stamped, shaped or otherwise handled to give features of desired height, shape, width, and positioning. When stacked or rolled, the features of one layer contact a subsequent layer, which seal to form passageways. The resulting structure can have high cell-density (>1000 cells per square inch) and a large volume fraction of active material.
    Type: Application
    Filed: April 29, 2019
    Publication date: August 22, 2019
    Inventors: Tracy A. FOWLER, Thomas M. Smith, Joshua I. Cutler, Jenna L. Walp
  • Patent number: 10307749
    Abstract: The disclosure relate generally to structures, forms, and monoliths, and methods of preparing the same. This disclosure can produce uniform structured passageways or channels of active material, including adsorbent or catalyst, by imprinting or molding features into a paste on a support that can be subsequently assembled into a gas or liquid treating structure, i.e. a monolith. The paste, which can include an active material, binder, and other potential additives, can be applied to the support or pushed through a support (as in a mesh) as a thin film. The paste can be imprinted, stamped, shaped or otherwise handled to give features of desired height, shape, width, and positioning. When stacked or rolled, the features of one layer contact a subsequent layer, which seal to form passageways. The resulting structure can have high cell-density (>1000 cells per square inch) and a large volume fraction of active material.
    Type: Grant
    Filed: October 12, 2015
    Date of Patent: June 4, 2019
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Tracy A. Fowler, Thomas M. Smith, Joshua I. Cutler, Jenna L. Walp
  • Patent number: 10118165
    Abstract: Disclosed is a catalyst composition and its use in a process for the conversion of a feedstock containing C8+ aromatic hydrocarbons to produce light aromatic products, comprising benzene, toluene and xylene. The catalyst composition comprises a first zeolite having a constraint index of 3 to 12, a second zeolite comprising a mordenite zeolite synthesized from TEA or MTEA, at least one first metal of Group 10 of the IUPAC Periodic Table, and at least one second metal of Group 11 to 15 of the IUPAC Periodic Table, wherein said mordenite zeolite has a mesopore surface area of greater than 30 m2/g and said mordenite zeolite comprises agglomerates composed of primary crystallites, wherein said primary crystallites have an average primary crystal size as measured by TEM of less than 80 nm and an aspect ratio of less than 2.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: November 6, 2018
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Wenyih F. Lai, Christine N. Elia, Jane C. Cheng, Shifang L. Luo, Hari Nair, Joshua I. Cutler, Doron Levin
  • Patent number: 10058853
    Abstract: Disclosed is a catalyst composition and its use in a process for the conversion of a feedstock containing C8+ aromatic hydrocarbons to produce light aromatic products, comprising benzene, toluene and xylene. The catalyst composition comprises a mordenite zeolite synthesized from TEA or MTEA, optionally at least one first metal of Group 10 of the IUPAC Periodic Table, and optionally at least one second metal of Group 11 to 15 of the IUPAC Periodic Table, wherein said mordenite zeolite has a mesopore surface area of greater than 30 m2/g and said mordenite zeolite comprises agglomerates composed of primary crystallites, wherein said primary crystallites have an average primary crystal size as measured by TEM of less than 80 nm and an aspect ratio of less than 2.
    Type: Grant
    Filed: January 22, 2016
    Date of Patent: August 28, 2018
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Wenyih F. Lai, Christine N. Elia, Jane C. Cheng, Shifang L. Luo, Hari Nair, Joshua I. Cutler, Doron Levin, Chuansheng Bai
  • Patent number: 10053403
    Abstract: Disclosed are catalyst compositions and their use in a process for the conversion of a feedstock containing C8+ aromatic hydrocarbons to produce light aromatic products, comprising benzene, toluene and xylene. The catalyst composition comprises a zeolite which comprises a MOR framework structure and a MFI and/or MEL framework structure, (b) at least one first metal of Group 10 of the IUPAC Periodic Table, and (c) optionally at least one second metal of Group 11 to 15 of the IUPAC Periodic Table. In one or more embodiments, the MOR framework structure comprises mordenite, preferably a mordenite zeolite having small particle size. The MFI framework structure preferably comprises ZSM-5, and the MEL framework structure preferably comprises ZSM-11.
    Type: Grant
    Filed: October 20, 2017
    Date of Patent: August 21, 2018
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Wenyih Frank Lai, Christine N. Elia, Nicholas S. Rollman, Joshua I. Cutler
  • Publication number: 20180134637
    Abstract: Disclosed are catalyst compositions and their use in a process for the conversion of a feedstock containing C8+ aromatic hydrocarbons to produce light aromatic products, comprising benzene, toluene and xylene. The catalyst composition comprises a zeolite which comprises a MOR framework structure and a MFI and/or MEL framework structure, (b) at least one first metal of Group 10 of the IUPAC Periodic Table, and (c) optionally at least one second metal of Group 11 to 15 of the IUPAC Periodic Table. In one or more embodiments, the MOR framework structure comprises mordenite, preferably a mordenite zeolite having small particle size. The MFI framework structure preferably comprises ZSM-5, and the MEL framework structure preferably comprises ZSM-11.
    Type: Application
    Filed: October 20, 2017
    Publication date: May 17, 2018
    Inventors: Wenyih Frank Lai, Christine N. Elia, Nicholas S. Rollman, Joshua I. Cutler
  • Publication number: 20180117175
    Abstract: The present disclosure is directed to compositions comprising templated nanoconjugates and methods of their use.
    Type: Application
    Filed: August 30, 2017
    Publication date: May 3, 2018
    Inventors: Chad A. Mirkin, David A. Giljohann, Weston L. Daniel, Joshua I. Cutler, Ke Zhang, Dan Zheng
  • Publication number: 20180001301
    Abstract: Structured adsorbent beds comprising a high cell density substrate, such as greater than about 1040 cpsi, and a coating comprising adsorbent particles, such as DDR and a binder, such as SiO2 are provided herein. Methods of preparing the structured adsorbent bed and gas separation processes using the structured adsorbent bed are also provided herein.
    Type: Application
    Filed: July 27, 2017
    Publication date: January 4, 2018
    Inventors: John F. Brody, Daniel P. Leta, Tracy Alan Fowler, Stephanie A. Freeman, Joshua I. Cutler
  • Patent number: 9757475
    Abstract: The present disclosure is directed to compositions comprising templated nanoconjugates and methods of their use.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: September 12, 2017
    Assignee: NORTHWESTERN UNIVERSITY
    Inventors: Chad A. Mirkin, David A. Giljohann, Weston L. Daniel, Joshua I. Cutler, Ke Zhang, Dan Zheng
  • Patent number: 9744521
    Abstract: Structured adsorbent beds comprising a high cell density substrate, such as greater than about 1040 cpsi, and a coating comprising adsorbent particles, such as DDR and a binder, such as SiO2 are provided herein. Methods of preparing the structured adsorbent bed and gas separation processes using the structured adsorbent bed are also provided herein.
    Type: Grant
    Filed: November 30, 2015
    Date of Patent: August 29, 2017
    Assignee: ExxonMobil Upstream Research Company
    Inventors: John F. Brody, Daniel P. Leta, Tracy Alan Fowler, Stephanie A. Freeman, Joshua I. Cutler
  • Publication number: 20160221895
    Abstract: Disclosed is a catalyst composition and its use in a process for the conversion of a feedstock containing C8+ aromatic hydrocarbons to produce light aromatic products, comprising benzene, toluene and xylene. The catalyst composition comprises a mordenite zeolite synthesized from TEA or MTEA, optionally at least one first metal of Group 10 of the IUPAC Periodic Table, and optionally at least one second metal of Group 11 to 15 of the IUPAC Periodic Table, wherein said mordenite zeolite has a mesopore surface area of greater than 30 m2/g and said mordenite zeolite comprises agglomerates composed of primary crystallites, wherein said primary crystallites have an average primary crystal size as measured by TEM of less than 80 nm and an aspect ratio of less than 2.
    Type: Application
    Filed: January 22, 2016
    Publication date: August 4, 2016
    Inventors: Wenyih F. Lai, Christine N. Elia, Jane C. Cheng, Shifang L. Luo, Hari Nair, Joshua I. Cutler, Doron Levin, Chuansheng Bai
  • Publication number: 20160220987
    Abstract: Disclosed is a catalyst composition and its use in a process for the conversion of a feedstock containing C8+ aromatic hydrocarbons to produce light aromatic products, comprising benzene, toluene and xylene. The catalyst composition comprises a first zeolite having a constraint index of 3 to 12, a second zeolite comprising a mordenite zeolite synthesized from TEA or MTEA, at least one first metal of Group 10 of the IUPAC Periodic Table, and at least one second metal of Group 11 to 15 of the IUPAC Periodic Table, wherein said mordenite zeolite has a mesopore surface area of greater than 30 m2/g and said mordenite zeolite comprises agglomerates composed of primary crystallites, wherein said primary crystallites have an average primary crystal size as measured by TEM of less than 80 nm and an aspect ratio of less than 2.
    Type: Application
    Filed: September 30, 2015
    Publication date: August 4, 2016
    Inventors: Wenyih F. Lai, Christine N. Elia, Jane C. Cheng, Shifang L. Luo, Hari Nair, Joshua I. Cutler, Doron Levin
  • Publication number: 20160206747
    Abstract: The present disclosure is directed to compositions comprising templated nanoconjugates and methods of their use.
    Type: Application
    Filed: September 25, 2015
    Publication date: July 21, 2016
    Inventors: Chad A. Mirkin, David A. Giljohann, Weston L. Daniel, Joshua I. Cutler, Ke Zhang, Dan Zheng
  • Patent number: 9376690
    Abstract: The present disclosure is directed to compositions comprising templated nanoconjugates and methods of their use.
    Type: Grant
    Filed: November 1, 2010
    Date of Patent: June 28, 2016
    Assignee: NORTHWESTERN UNIVERSITY
    Inventors: Chad A. Mirkin, David A. Giljohann, Weston L. Daniel, Joshua I. Cutler, Ke Zhang, Dan Zheng
  • Publication number: 20160175815
    Abstract: Structured adsorbent beds comprising a high cell density substrate, such as greater than about 1040 cpsi, and a coating comprising adsorbent particles, such as DDR and a binder, such as SiO2 are provided herein. Methods of preparing the structured adsorbent bed and gas separation processes using the structured adsorbent bed are also provided herein.
    Type: Application
    Filed: November 30, 2015
    Publication date: June 23, 2016
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: John F. Brody, Daniel P. Leta, Tracy Alan Fowler, Stephanie A. Freeman, Joshua I. Cutler
  • Publication number: 20160129433
    Abstract: The disclosure relate generally to structures, forms, and monoliths, and methods of preparing the same. This disclosure can produce uniform structured passageways or channels of active material, including adsorbent or catalyst, by imprinting or molding features into a paste on a support that can be subsequently assembled into a gas or liquid treating structure, i.e. a monolith. The paste, which can include an active material, binder, and other potential additives, can be applied to the support or pushed through a support (as in a mesh) as a thin film. The paste can be imprinted, stamped, shaped or otherwise handled to give features of desired height, shape, width, and positioning. When stacked or rolled, the features of one layer contact a subsequent layer, which seal to form passageways. The resulting structure can have high cell-density (>1000 cells per square inch) and a large volume fraction of active material.
    Type: Application
    Filed: October 12, 2015
    Publication date: May 12, 2016
    Inventors: Tracy A. Fowler, Thomas M. Smith, Joshua I. Cutler, Jenna L. Walp