Patents by Inventor Joshua J. BLAUER

Joshua J. BLAUER has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11229796
    Abstract: A device and method are described for transmitting tissue conductance communication (TCC) signals. A device may be is configured to establish a transmission window by transmitting a TCC test signal at multiple time points over a transmission test period to a receiving device and detect at least one response to the transmitted TCC test signals performed by the receiving device. The IMD is configured to establish the transmission window based on the at least one detected response so that the transmission window is correlated to a time of relative increased transimpedance between a transmitting electrode vector and receiving electrode vector during the transmission test period.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: January 25, 2022
    Assignee: Medtronic Inc.
    Inventors: Yanzhu Zhao, Yong K. Cho, Michael D. Eggen, Wei Gan, Kathryn Hilpisch, Srikara V. Peelukhana, Darrell J. Swenson, Joshua J. Blauer
  • Publication number: 20200196892
    Abstract: Methods and related systems and devices for cardiac therapy use pseudo-electric vectors (PEVs) for characterizing and representing the electrical forces generated by a patient's heart in a three-dimensional (3D) manner. PEVs may be used to predict whether a patient will respond to pacing therapy prior to implant, during implant, or in the follow-up after implant. Various cardiac therapy systems and devices, such as an electrocardiogram (ECG) belt or vest, which may include a plurality of external electrodes, may be used to obtain electrical activity information to generate the PEVs. One or more spatio-temporal PEVs may be determined using one or more sensors at one or more points in time. Spatial representation data may be determined based on the PEVs.
    Type: Application
    Filed: December 9, 2019
    Publication date: June 25, 2020
    Inventors: Alfonso Aranda Hernandez, Subham Ghosh, Joshua J. Blauer
  • Patent number: 10617318
    Abstract: The exemplary systems and methods may be configured to monitor electrical activity from a patient using a plurality of external electrodes. The exemplary systems and methods may be further configured to provide a model heart representative of the patient's heart based on at least one of a plurality of patient characteristics. The model heart can include a plurality of segments. The exemplary systems and methods may be further configured to determine a value of electrical activity for each of a plurality of anatomic regions of the model heart based on the mapped electrical activity. Each of the plurality of anatomic regions can include a subset of the plurality of segments.
    Type: Grant
    Filed: February 27, 2018
    Date of Patent: April 14, 2020
    Assignee: Medtronic, Inc.
    Inventors: Subham Ghosh, Joshua J. Blauer
  • Publication number: 20190261876
    Abstract: The exemplary systems and methods may be configured to monitor electrical activity from a patient using a plurality of external electrodes. The exemplary systems and methods may be further configured to provide a model heart representative of the patient's heart based on at least one of a plurality of patient characteristics. The model heart can include a plurality of segments. The exemplary systems and methods may be further configured to determine a value of electrical activity for each of a plurality of anatomic regions of the model heart based on the mapped electrical activity. Each of the plurality of anatomic regions can include a subset of the plurality of segments.
    Type: Application
    Filed: February 27, 2018
    Publication date: August 29, 2019
    Inventors: Subham Ghosh, Joshua J. Blauer
  • Publication number: 20190184181
    Abstract: A device and method are described for transmitting tissue conductance communication (TCC) signals. A device may be is configured to establish a transmission window by transmitting a TCC test signal at multiple time points over a transmission test period to a receiving device and detect at least one response to the transmitted TCC test signals performed by the receiving device. The IMD is configured to establish the transmission window based on the at least one detected response so that the transmission window is correlated to a time of relative increased transimpedance between a transmitting electrode vector and receiving electrode vector during the transmission test period.
    Type: Application
    Filed: December 14, 2018
    Publication date: June 20, 2019
    Inventors: Yanzhu ZHAO, Yong K. CHO, Michael D. EGGEN, Wei GAN, Kathryn HILPISCH, Srikara V. PEELUKHANA, Darrell J. SWENSON, Joshua J. BLAUER