Patents by Inventor Joshua Jacob

Joshua Jacob has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210162906
    Abstract: This disclosure relates to a dual-purpose grab handle and tie-down bracket for a motor vehicle. An example vehicle includes a body panel defining at least a portion of a recess, and a component mounted at least partially in the recess. Further, the component provides a tie-down bracket configured to attach to a tie-down and a grab handle configured to be grasped by a hand of a user.
    Type: Application
    Filed: December 2, 2019
    Publication date: June 3, 2021
    Inventors: Dragan B. Stojkovic, Joshua Jacob Clement, John Comiez
  • Publication number: 20210139320
    Abstract: An optical electronics device includes first, second and third wafers. The first wafer has a semiconductor substrate with a dielectric layer on a side of the semiconductor substrate. The second wafer has a transparent substrate with an anti-reflective coating on a side of the transparent substrate. The first wafer is bonded to the second wafer at a silicon dioxide layer between the semiconductor substrate and the anti-reflective coating. The first and second wafers include a cavity extending from the dielectric layer through the semiconductor substrate and through the silicon dioxide layer to the anti-reflective coating. The third wafer includes micromechanical elements. The third wafer is bonded to the dielectric layer, and the micromechanical elements are contained within the cavity.
    Type: Application
    Filed: December 15, 2020
    Publication date: May 13, 2021
    Inventor: Simon Joshua Jacobs
  • Patent number: 11000915
    Abstract: In described examples, a transient liquid phase (TLP) metal bonding material includes a first substrate and a base metal layer. The base metal layer is disposed over at least a portion of the first substrate. The base metal has a surface roughness (Ra) of between about 0.001 to 500 nm. Also, the TLP metal bonding material includes a first terminal metal layer that forms an external surface of the TLP metal bonding material. A metal fuse layer is positioned between the base metal layer and the first terminal metal layer. The TLP metal bonding material is stable at room temperature for at least a predetermined period of time.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: May 11, 2021
    Assignee: Texas Instruments Incorporated
    Inventors: John Charles Ehmke, Simon Joshua Jacobs
  • Publication number: 20210098635
    Abstract: Windowed wafer assemblies having interposers are described. A described example integrated circuit (IC) package includes first and second dies, where at least one of the first or second dies includes an optical window with a light transmittance wavelength range between 0.1 micrometers and 1.0 millimeter, and an interposer die between the first and second dies, where the interposer die is coupled to the first die at a first surface of the interposer to form a first bonded interface, where the interposer is coupled to the second die at a second surface of the interposer die to form a second bonded interface, where the second surface is opposite the first surface, where the first and second bonded interfaces form a sealed cavity of the IC package that is at least partially formed by the optical window, and where the interposer die includes electrical routing.
    Type: Application
    Filed: September 30, 2019
    Publication date: April 1, 2021
    Inventor: Simon Joshua Jacobs
  • Publication number: 20210050459
    Abstract: An integrated filter optical package including an ambient light sensor that incorporates an infrared (IR) filter in an integrated circuit (IC) stacked-die configuration is provided. The integrated filter optical package incorporates an infrared (IR) coated glass layer to filter out or block IR light while allowing visible (ambient) light to pass through to a light sensitive die having a light sensor. The ambient light sensor detects an amount of visible light that passes through the IR coated glass layer and adjusts a brightness or intensity of a display screen on an electronic device accordingly so that the display screen is readable.
    Type: Application
    Filed: August 13, 2019
    Publication date: February 18, 2021
    Inventors: Steven Alfred Kummerl, Simon Joshua Jacobs, James Richard Huckabee, Jo Bito, Rongwei Zhang
  • Patent number: 10913654
    Abstract: An electronic device includes a package substrate, a circuit assembly, and a housing. The circuit assembly is mounted on the package substrate. The circuit assembly includes a first sealed cavity formed in a device substrate. The housing is mounted on the package substrate to form a second sealed cavity about the circuit assembly.
    Type: Grant
    Filed: March 10, 2020
    Date of Patent: February 9, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Adam Joseph Fruehling, Juan Alejandro Herbsommer, Simon Joshua Jacobs, Benjamin Stassen Cook, James F. Hallas, Randy Long
  • Patent number: 10894712
    Abstract: An optical electronics device includes first, second and third wafers. The first wafer has a semiconductor substrate with a dielectric layer on a side of the semiconductor substrate. The second wafer has a transparent substrate with an anti-reflective coating on a side of the transparent substrate. The first wafer is bonded to the second wafer at a silicon dioxide layer between the semiconductor substrate and the anti-reflective coating. The first and second wafers include a cavity extending from the dielectric layer through the semiconductor substrate and through the silicon dioxide layer to the anti-reflective coating. The third wafer includes micromechanical elements. The third wafer is bonded to the dielectric layer, and the micromechanical elements are contained within the cavity.
    Type: Grant
    Filed: May 9, 2018
    Date of Patent: January 19, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Simon Joshua Jacobs
  • Publication number: 20200207610
    Abstract: A microelectronic device package includes a host material and a gettering material. The microelectronic device package also includes a polymeric component between the host material and the gettering material. The polymeric component substantially encapsulates the gettering material. The microelectronic device package further includes a fluorochemical lubricant. The polymeric component serves to prevent a reaction between the fluorochemical lubricant and the gettering material. Alternatively, the fluorochemical lubricant may be encapsulated by a polymeric component and may be released upon an increase in temperature during or after a packaging step.
    Type: Application
    Filed: December 27, 2019
    Publication date: July 2, 2020
    Inventor: Simon Joshua JACOBS
  • Publication number: 20200207611
    Abstract: An electronic device includes a package substrate, a circuit assembly, and a housing. The circuit assembly is mounted on the package substrate. The circuit assembly includes a first sealed cavity formed in a device substrate. The housing is mounted on the package substrate to form a second sealed cavity about the circuit assembly.
    Type: Application
    Filed: March 10, 2020
    Publication date: July 2, 2020
    Inventors: Adam Joseph FRUEHLING, Juan Alejandro HERBSOMMER, Simon Joshua JACOBS, Benjamin Stassen Cook, James F. HALLAS, Randy LONG
  • Publication number: 20200211995
    Abstract: A semiconductor device includes a solder supporting material above a substrate. The semiconductor device also includes a solder on the solder supporting material. The semiconductor device further includes selective laser annealed or laser ablated portions of the solder and underlying solder supporting material to form a semiconductor device having 3D features.
    Type: Application
    Filed: December 27, 2019
    Publication date: July 2, 2020
    Inventor: Simon Joshua JACOBS
  • Publication number: 20200166404
    Abstract: Millimeter wave energy is provided to a spectroscopy cavity of a spectroscopy device that contains interrogation molecules. The microwave energy is received after it traverses the spectroscopy cavity. The amount of interrogation molecules in the spectroscopy cavity is adjusted by activating a precursor material in one or more sub-cavities coupled to the spectroscopy cavity by a diffusion path to increase the amount of interrogation molecules or by activating the getter material in one or more sub-cavities coupled to the spectroscopy cavity by a diffusion path to decrease the amount of interrogation molecules.
    Type: Application
    Filed: November 28, 2018
    Publication date: May 28, 2020
    Inventors: Adam Joseph Fruehling, Benjamin Stassen Cook, Simon Joshua Jacobs, Juan Alejandro Herbsommer
  • Patent number: 10614512
    Abstract: Described are techniques for providing an interactive user interface configured to receive at least two types of user input, such as a tap gesture and a swipe gesture provided to a control region of the user interface. Responsive to the first type of user input, a first process may be performed, such as adding an indication of an item to an electronic list for a future purchase. Responsive to the second type of user input, a second process may be performed, such as the immediate purchase of an item based on stored shipping and payment data. In some cases, data associated with a process may be accessed responsive to the initiation of user input, but the process may not be initiated until the user input has been completed. Modifications to characteristics of the process may be changed responsive to additional user input provided to the control region.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: April 7, 2020
    Assignee: AMAZON TECHNOLOGIES, INC.
    Inventors: Kenneth Ryan Ogborn, Anoop Balakrishnan, Joshua Jacob Slimp
  • Patent number: 10589986
    Abstract: An electronic device includes a package substrate, a circuit assembly, and a housing. The circuit assembly is mounted on the package substrate. The circuit assembly includes a first sealed cavity formed in a device substrate. The housing is mounted on the package substrate to form a second sealed cavity about the circuit assembly.
    Type: Grant
    Filed: September 6, 2017
    Date of Patent: March 17, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Adam Joseph Fruehling, Juan Alejandro Herbsommer, Simon Joshua Jacobs, Benjamin Stassen Cook, James F. Hallas, Randy Long
  • Patent number: 10549986
    Abstract: An illustrate method (and device) includes etching a cavity in a first substrate (e.g., a semiconductor wafer), forming a first metal layer on a first surface of the first substrate and in the cavity, and forming a second metal layer on a non-conductive structure (e.g., glass). The method also may include removing a portion of the second metal layer to form an iris to expose a portion of the non-conductive structure, forming a bond between the first metal layer and the second metal layer to thereby attach the non-conductive structure to the first substrate, sealing an interface between the non-conductive structure and the first substrate, and patterning an antenna on a surface of the non-conductive structure.
    Type: Grant
    Filed: September 7, 2017
    Date of Patent: February 4, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Juan Alejandro Herbsommer, Simon Joshua Jacobs, Benjamin Stassen Cook, Adam Joseph Fruehling
  • Patent number: 10544039
    Abstract: Methods for depositing a measured amount of a species in a sealed cavity. In one example, a method for depositing molecules in a sealed cavity includes depositing a selected number of microcapsules in a cavity. Each of the microcapsules contains a predetermined amount of a first fluid. The cavity is sealed after the microcapsules are deposited. After the cavity is sealed the microcapsules are ruptured to release molecules of the first fluid into the cavity.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: January 28, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Benjamin Stassen Cook, Kurt Wachtler, Adam Joseph Fruehling, Juan Alejandro Herbsommer, Simon Joshua Jacobs
  • Patent number: 10493722
    Abstract: A method includes forming a plurality of layers of an oxide and a metal on a substrate. For example, the layers may include a metal layer sandwiched between silicon oxide layers. A non-conductive structure such as glass is then bonded to one of the oxide layers. An antenna can then be patterned on the non-conductive structure, and a cavity can be created in the substrate. Another metal layer is deposited on the surface of the cavity, and an iris is patterned in the metal layer to expose the one of the oxide layers. Another metal layer is formed on a second substrate and the two substrates are bonded together to thereby seal the cavity.
    Type: Grant
    Filed: November 19, 2018
    Date of Patent: December 3, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Adam Joseph Fruehling, Juan Alejandro Herbsommer, Benjamin Stassen Cook, Simon Joshua Jacobs
  • Patent number: 10424523
    Abstract: A method for forming a sealed cavity includes bonding a non-conductive structure to a first substrate to form a non-conductive aperture into the first substrate. On a surface of the non-conductive structure opposite the first substrate, the method includes depositing a first metal layer. The method further includes patterning a first iris in the first metal layer, depositing a first dielectric layer on a surface of the first metal layer opposite the non-conductive structure, and patterning an antenna on a surface of the first dielectric layer opposite the first metal layer. The method also includes creating a cavity in the first substrate, depositing a second metal layer on a surface of the cavity, patterning a second iris in the second metal layer, and bonding a second substrate to a surface of the first substrate opposite the non-conductive structure to thereby seal the cavity.
    Type: Grant
    Filed: September 7, 2017
    Date of Patent: September 24, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Adam Joseph Fruehling, Juan Alejandro Herbsommer, Simon Joshua Jacobs, Benjamin Stassen Cook
  • Patent number: 10370760
    Abstract: Described examples include a method of fabricating a gas cell, including forming a cavity in a first substrate, providing a nonvolatile precursor material in the cavity of the first substrate, bonding a second substrate to the first substrate to form a sealed cavity including the nonvolatile precursor material in the cavity, and activating the precursor material after or during forming the sealed cavity to release a target gas inside the sealed cavity.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: August 6, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Simon Joshua Jacobs, Juan Alejandro Herbsommer, Adam Joseph Fruehling
  • Patent number: 10364144
    Abstract: Disclosed examples provide gas cells and a method of fabricating a gas cell, including forming a cavity in a first substrate, forming a first conductive material on a sidewall of the cavity, forming a glass layer on the first conductive material, forming a second conductive material on a bottom side of a second substrate, etching the second conductive material to form apertures through the second conductive material, forming conductive coupling structures on a top side of the second substrate, and bonding a portion of the bottom side of the second substrate to a portion of the first side of the first substrate to seal the cavity.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: July 30, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Juan Alejandro Herbsommer, Adam Joseph Fruehling, Simon Joshua Jacobs
  • Publication number: 20190186007
    Abstract: Described examples include a method of fabricating a gas cell, including forming a cavity in a first substrate, providing a nonvolatile precursor material in the cavity of the first substrate, bonding a second substrate to the first substrate to form a sealed cavity including the nonvolatile precursor material in the cavity, and activating the precursor material after or during forming the sealed cavity to release a target gas inside the sealed cavity.
    Type: Application
    Filed: December 15, 2017
    Publication date: June 20, 2019
    Applicant: Texas Instruments Incorporated
    Inventors: Simon Joshua Jacobs, Juan Alejandro Herbsommer, Adam Joseph Fruehling