Patents by Inventor Joshua Lessing
Joshua Lessing has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11752641Abstract: Exemplary embodiments relate to improvements in soft robotic systems that permit a soft robotic end effector to be a self-contained system, without reliance on a tether to deliver inflation fluid to the actuator(s) of the end effector. According to some embodiments, a robotic system may be provided including a soft actuator and a hub. The body of the hub may include an integrated pressure source configured to supply inflation fluid through the actuator interface to the soft actuator. The pressure source may be, for example, a compressor (such as a twin-head compressor) or a reaction chamber configured to vaporize a fuel to create a high-temperature pressurized gas and deliver the pressurized gas to the actuator One or more accumulators may receive inflation fluid (or a partial vacuum) from the compressor over time, and store the inflation fluid under pressure, thus allowing actuation over a relatively short time period.Type: GrantFiled: November 1, 2021Date of Patent: September 12, 2023Assignee: Soft Robotics, Inc.Inventors: Ryan Knopf, Joshua Lessing, Daniel Vincent Harburg, Grant Sellers, Kevin Alcedo
-
Patent number: 11286144Abstract: Exemplary embodiments relate to applications for soft robotic actuators in the manufacturing, packaging, and food preparation industries, among others. Methods and systems are disclosed for fixing target objects and/or receptacles using soft robotic actuators, for positioning target objects and/or receptacles, and/or for diverting or sorting objects. By using soft robotic actuators to perform the fixing, positioning, and/or diverting, objects of different sizes and configurations may be manipulated on the same processing line, without the need to reconfigure the line or install new hardware when a new object is received.Type: GrantFiled: February 20, 2020Date of Patent: March 29, 2022Assignee: SOFT ROBOTICS, INC.Inventors: Joshua Lessing, Daniel Vincent Harburg, Sarv Parteek Singh, Jeffrey Curhan
-
Publication number: 20200189895Abstract: Exemplary embodiments relate to applications for soft robotic actuators in the manufacturing, packaging, and food preparation industries, among others. Methods and systems are disclosed for fixing target objects and/or receptacles using soft robotic actuators, for positioning target objects and/or receptacles, and/or for diverting or sorting objects. By using soft robotic actuators to perform the fixing, positioning, and/or diverting, objects of different sizes and configurations may be manipulated on the same processing line, without the need to reconfigure the line or install new hardware when a new object is received.Type: ApplicationFiled: February 20, 2020Publication date: June 18, 2020Inventors: Joshua Lessing, Daniel Vincent Harburg, Sarv Parteek Singh, Jeffrey Curhan
-
Patent number: 10597275Abstract: Exemplary embodiments relate to applications for soft robotic actuators in the manufacturing, packaging, and food preparation industries, among others. Methods and systems are disclosed for fixing target objects and/or receptacles using soft robotic actuators, for positioning target objects and/or receptacles, and/or for diverting or sorting objects. By using soft robotic actuators to perform the fixing, positioning, and/or diverting, objects of different sizes and configurations may be manipulated on the same processing line, without the need to reconfigure the line or install new hardware when a new object is received.Type: GrantFiled: April 7, 2017Date of Patent: March 24, 2020Assignee: Soft Robotics, Inc.Inventors: Joshua Lessing, Daniel Vincent Harburg, Sarv Parteek Singh, Jeffrey Curhan
-
Patent number: 10576640Abstract: Exemplary embodiments relate to improvements in soft robotic systems that permit a soft robotic end effector to be a self-contained system, without reliance on a tether to deliver inflation fluid to the actuator(s) of the end effector. According to some embodiments, a robotic system may be provided including a soft actuator and a hub. The body of the hub may include an integrated pressure source configured to supply inflation fluid through the actuator interface to the soft actuator. The pressure source may be, for example, a compressor (such as a twin-head compressor) or a reaction chamber configured to vaporize a fuel to create a high-temperature pressurized gas and deliver the pressurized gas to the actuator One or more accumulators may receive inflation fluid (or a partial vacuum) from the compressor over time, and store the inflation fluid under pressure, thus allowing actuation over a relatively short time period.Type: GrantFiled: July 17, 2018Date of Patent: March 3, 2020Assignee: Soft Robotics, Inc.Inventors: Ryan Knopf, Joshua Lessing, Daniel Vincent Harburg, Grant Sellers, Kevin Alcedo
-
Publication number: 20180319018Abstract: Exemplary embodiments relate to improvements in soft robotic systems that permit a soft robotic end effector to be a self-contained system, without reliance on a tether to deliver inflation fluid to the actuator(s) of the end effector. According to some embodiments, a robotic system may be provided including a soft actuator and a hub. The body of the hub may include an integrated pressure source configured to supply inflation fluid through the actuator interface to the soft actuator. The pressure source may be, for example, a compressor (such as a twin-head compressor) or a reaction chamber configured to vaporize a fuel to create a high-temperature pressurized gas and deliver the pressurized gas to the actuator One or more accumulators may receive inflation fluid (or a partial vacuum) from the compressor over time, and store the inflation fluid under pressure, thus allowing actuation over a relatively short time period.Type: ApplicationFiled: July 17, 2018Publication date: November 8, 2018Inventors: Ryan KNOPF, Joshua LESSING, Daniel Vincent HARBURG, Grant SELLERS, Kevin ALCEDO
-
Patent number: 10046462Abstract: Exemplary embodiments relate to improvements in soft robotic systems that permit a soft robotic end effector to be a self-contained system, without reliance on a tether to deliver inflation fluid to the actuator(s) of the end effector. According to some embodiments, a robotic system may be provided including a soft actuator and a hub. The body of the hub may include an integrated pressure source configured to supply inflation fluid through the actuator interface to the soft actuator. The pressure source may be, for example, a compressor (such as a twin-head compressor) or a reaction chamber configured to vaporize a fuel to create a high-temperature pressurized gas and deliver the pressurized gas to the actuator One or more accumulators may receive inflation fluid (or a partial vacuum) from the compressor over time, and store the inflation fluid under pressure, thus allowing actuation over a relatively short time period.Type: GrantFiled: August 1, 2016Date of Patent: August 14, 2018Assignee: SOFT ROBOTICS, INC.Inventors: Ryan Knopf, Joshua Lessing, Daniel Vincent Harburg, Grant Sellers, Kevin Alcedo
-
Publication number: 20170291806Abstract: Exemplary embodiments relate to applications for soft robotic actuators in the manufacturing, packaging, and food preparation industries, among others. Methods and systems are disclosed for fixing target objects and/or receptacles using soft robotic actuators, for positioning target objects and/or receptacles, and/or for diverting or sorting objects. By using soft robotic actuators to perform the fixing, positioning, and/or diverting, objects of different sizes and configurations may be manipulated on the same processing line, without the need to reconfigure the line or install new hardware when a new object is received.Type: ApplicationFiled: April 7, 2017Publication date: October 12, 2017Inventors: Joshua Lessing, Daniel Vincent Harburg, Sarv Parteek Singh, Jeffrey Curhan
-
Publication number: 20170203443Abstract: Exemplary embodiments relate to soft robotic gripper systems suited to grasping target objects in cluttered environments. Some embodiments provide extension rods, hinges, and/or rails that allow a soft robotic actuator to be extended towards or away from a robotic base and/or other actuators. Accordingly, a gripper including the actuator may be reconfigured into a size and/or shape that allows for improved access to the cluttered environment. Further embodiments relate to soft robotic gripper systems for supporting grasped objects during high acceleration movements using vacuum, gripper, and/or bellows devices. Still further embodiments relate to specialized grippers for manipulating food items.Type: ApplicationFiled: January 20, 2017Publication date: July 20, 2017Inventors: Joshua Lessing, Ryan Knopf, Kevin Alcedo, Daniel Harburg, Sarv Parteek Singh
-
Publication number: 20170028566Abstract: Exemplary embodiments relate to improvements in soft robotic systems that permit a soft robotic end effector to be a self-contained system, without reliance on a tether to deliver inflation fluid to the actuator(s) of the end effector. According to some embodiments, a robotic system may be provided including a soft actuator and a hub. The body of the hub may include an integrated pressure source configured to supply inflation fluid through the actuator interface to the soft actuator. The pressure source may be, for example, a compressor (such as a twin-head compressor) or a reaction chamber configured to vaporize a fuel to create a high-temperature pressurized gas and deliver the pressurized gas to the actuator One or more accumulators may receive inflation fluid (or a partial vacuum) from the compressor over time, and store the inflation fluid under pressure, thus allowing actuation over a relatively short time period.Type: ApplicationFiled: August 1, 2016Publication date: February 2, 2017Inventors: Ryan Knopf, Joshua Lessing, Daniel Harburg, Grant Sellers, Kevin Alcedo