Patents by Inventor Joshua M. Hudman

Joshua M. Hudman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8152307
    Abstract: A optical apparatus (201) for use in an laser imaging system (200) is provided. The optical apparatus (201) includes one or more optical elements (215) that are configured to create an intermediate image plane (217) in the laser imaging system (200). A diffractive optical element (216) is then disposed at the intermediate image plane (217) to reduce speckle. The diffractive optical element (216) includes a periodically repeating phase mask (218) that can be configured in accordance with steps, vortex functions, Hermite-Gaussian functions, and so forth. Smooth grey-level phase transitional surface (337) can be placed between elements (333,334) to improve brightness and image quality. The periodically repeating phase mask (218) makes manufacture simple by reducing alignment sensitivity, and can be used to make applicable safety standards easier to meet as well.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: April 10, 2012
    Assignee: Microvision, Inc.
    Inventors: Markus Duelli, Alban N. Lescure, Mark O. Freeman, Christian Dean DeJong, Joshua M. Hudman
  • Publication number: 20120075686
    Abstract: Briefly, in accordance with one or more embodiments, a display projector may comprise a light source to generate a beam to be scanned, a scanning platform to scan the beam in a selected pattern to project an image on a projection surface, and a collection lens and microlens array to shape the beam to a desired beam profile without significantly increasing spot size of the beam with increasing distance from the projection surface.
    Type: Application
    Filed: September 29, 2010
    Publication date: March 29, 2012
    Applicant: MICROVISION, INC.
    Inventors: Joshua M. Hudman, Joshua O. Miller, Richard A. James, Robert A. Sprowl, Markus Duelli
  • Patent number: 8107147
    Abstract: A scanning beam projection system includes a two-mirror scanning system. One mirror scans in one direction, and a second mirror scans in a second direction. A fast scan mirror receives a modulated light beam from a fold mirror and directs the modulated light beam to a slow can mirror. The fold mirror may be formed on an output optic or may be formed on a common substrate with the slow scan mirror.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: January 31, 2012
    Assignee: Microvision, Inc.
    Inventors: Joshua M. Hudman, Wyatt O. Davis, Dean R. Brown
  • Publication number: 20120001834
    Abstract: Briefly, in accordance with one or more embodiments, a scanned beam display, comprises a light source to generate a beam to be scanned and a scanning platform to scan the beam into an exit cone. The scanning platform receives the beam at a selected feed angle, and the scanning platform has a surface structure to redirect the exit cone at an exit angle that is less than the feed angle.
    Type: Application
    Filed: June 30, 2010
    Publication date: January 5, 2012
    Applicant: MICROVISION, INC.
    Inventors: Joshua M. Hudman, Wyatt O. Davis, Mark O. Freeman, Mark P. Helsel, David Roy Bowman, Kelly D. Linden
  • Publication number: 20110286068
    Abstract: Briefly, in accordance with one or more embodiments, a scanned beam display comprises a light source to generate a light beam and a scanning platform to receive the light beam and to scan the light beam as a projected image. The scanned beam display further comprises first and second optics, wherein the first optic directs the light beam onto the scanning platform to be reflected through the second optic as the projected image. A reflective surface disposed on at least one of the first optic or the second optic reflect stray light away from the projected image.
    Type: Application
    Filed: May 21, 2010
    Publication date: November 24, 2011
    Applicant: MICROVISION, INC.
    Inventor: Joshua M. Hudman
  • Publication number: 20110249197
    Abstract: A wavelength combining apparatus includes first and second optical devices. The first optical device collects and collimates or focuses light from multiple laser light sources. The second optical device includes multiple nonparallel dichroic surfaces to combine light received from the first optical device.
    Type: Application
    Filed: April 7, 2010
    Publication date: October 13, 2011
    Applicant: MICROVISION, INC.
    Inventors: Robert A. Sprowl, Joshua M. Hudman, Joshua O. Miller
  • Publication number: 20110149251
    Abstract: A optical apparatus (201) for use in an laser imaging system (200) is provided. The optical apparatus (201) includes one or more optical elements (215) that are configured to create an intermediate image plane (217) in the laser imaging system (200). A diffractive optical element (216) is then disposed at the intermediate image plane (217) to reduce speckle. The diffractive optical element (216) includes a periodically repeating phase mask (218) that can be configured in accordance with steps, vortex functions, Hermite-Gaussian functions, and so forth. Smooth grey-level phase transitional surface (337) can be placed between elements (333,334) to improve brightness and image quality. The periodically repeating phase mask (218) makes manufacture simple by reducing alignment sensitivity, and can be used to make applicable safety standards easier to meet as well.
    Type: Application
    Filed: December 21, 2009
    Publication date: June 23, 2011
    Applicant: MICROVISION, INC.
    Inventors: Markus Duelli, Alban N. Lescure, Mark O. Freeman, Christian Dean DeJong, Joshua M. Hudman
  • Publication number: 20110116169
    Abstract: Briefly, in accordance with one or more embodiments, a dichroic optic having a first side and a second side opposite to the first side, wherein the second side has an optical filter, wherein each of a light beam having a first wavelength, a second wavelength and a third wavelength enter, exit or reflect from the dichroic optic only from at least one of the first or second sides, wherein prior to incidence on the dichroic optic each of the light beams having the first, second and third wavelengths are non-collinear with each other, wherein the light beam having the first wavelength and the light beam having the second wavelength are substantially collinear within the dichroic optic, wherein the optical filter has a response capable of transmitting at least one of the light beam having the first wavelength and the light beam having the second wavelength, while reflecting the light beam having the third wavelength, and wherein the light beam having the first wavelength, the second wavelength, and the third wavel
    Type: Application
    Filed: November 13, 2009
    Publication date: May 19, 2011
    Applicant: MICROVISION, INC.
    Inventor: Joshua M. Hudman
  • Publication number: 20110109884
    Abstract: Briefly, in accordance with one or more embodiments, a scanned beam display may utilize one or more post-scan optics while at least partially maintaining an infinite focus, or nearly infinite focus, property of the display. The display may comprise a light source to generate a light beam, a scanning platform to generate a raster scan from the light beam projected as a projected image, one or more post-scan optics to at least partially adjust the projected image, and one or more collimating optics to focus the light beam from the light source, the one or more collimating optics having a selected focal length to at least partially provide infinite, or nearly infinite focus, of the projected image at or beyond a selected distance.
    Type: Application
    Filed: November 12, 2009
    Publication date: May 12, 2011
    Applicant: MICROVISION, INC.
    Inventors: Joshua M. Hudman, Maarten Niesten, Richard A. James
  • Patent number: 7878658
    Abstract: Briefly, in accordance with one or more embodiments, a prism capable of being utilized in a scanned beam projector comprises a first window disposed on a first surface through which the beam is capable of passing to impinge upon a scan engine at an angle of incidence off axis from an axis normal to a plane of the scan engine, and a second window disposed on a second surface through which the beam is capable of passing. The first surface of the prism is disposed at a non-parallel angle with respect to the second surface to reduce distortion of the scan pattern or image from the scan engine. The prism may further comprise one or more internal surfaces capable of reflecting the beam onto the scan engine off axis, where such reflecting may impart a desired polarization state to the beam reflected onto the scan engine.
    Type: Grant
    Filed: April 18, 2008
    Date of Patent: February 1, 2011
    Assignee: Microvision, inc.
    Inventors: Joshua M. Hudman, Joshua O. Miller
  • Publication number: 20100245957
    Abstract: A scanning beam projection system includes a two-mirror scanning system. One mirror scans in one direction, and a second mirror scans in a second direction. A fast scan mirror receives a modulated light beam from a fold mirror and directs the modulated light beam to a slow can mirror. The fold mirror may be formed on an output optic or may be formed on a common substrate with the slow scan mirror.
    Type: Application
    Filed: March 27, 2009
    Publication date: September 30, 2010
    Applicant: Microvision, Inc.
    Inventors: Joshua M. Hudman, Wyatt O. Davis, Dean R. Brown
  • Publication number: 20100232005
    Abstract: Briefly, in accordance with one or more embodiments, a scanned beam display comprises one or more light sources to generate one or more light beams, a scanner module to receive the one or more light beams to generate a displayed image via scanning of the light beams onto a projection surface, and a spatial phase modulator disposed between the light source and the scanner module to phase modulate the one or more light beams to provide speckle reduction in the display image projected onto the projection surface.
    Type: Application
    Filed: March 12, 2009
    Publication date: September 16, 2010
    Applicant: Microvision, Inc.
    Inventors: Alban N. Lescure, Mark O. Freeman, Christian Dean DeJong, Maarten Niesten, Joshua M. Hudman
  • Publication number: 20100060863
    Abstract: Briefly, in accordance with one or more embodiments, a wedge is disposed after the MEMS scanner in a MEMS scanning display system which redirects the scan cone at the same time stretches and/or squashes the image to reduce or eliminate distortion inherent in scanning projectors, the distortion being a result of a trajectory of the scanned beam caused by the off axis input beam and a transform from a scanning mirror to an image plane.
    Type: Application
    Filed: September 11, 2008
    Publication date: March 11, 2010
    Applicant: MICROVISION, INC.
    Inventors: Joshua M. Hudman, Joshua O. Miller
  • Publication number: 20100053591
    Abstract: A encoded image projection system (100) is configured to determine the proximity of the system to a projection surface (106). The encoded image projection system (100) includes a light encoder (105) that scans a non-visible light beam (115) on the projection surface (106) selectively when scanning visible light to create an image. A detector (118) is then configured to receive reflections of the non-visible light beam (115) from the projection surface (106). A control circuit (120) is configured to determine the distance (124) between the projection surface (106) and the system from, for example, intensity data or location data received from the detector (118). Where the distances (124) are below a threshold, the control circuit (120) can either reduce the output power of the system or turn the system off.
    Type: Application
    Filed: November 9, 2009
    Publication date: March 4, 2010
    Applicant: MICROVISION, INC.
    Inventors: Gregory T. Gibson, Joshua M. Hudman, Margaret K. Brown, Christian Dean DeJong
  • Publication number: 20090147272
    Abstract: Briefly, in accordance with one or more embodiments, a proximity detector is placed proximate to projector to detect an obstruction disposed proximate to the projector. The proximity detector is capable of estimating the distance from an object to the projector. If an object is detected within a minimum distance, the projector operation may be altered, for example to cause the projector to turn off, or to reduce the intensity of emitted light so that the power of the emitted light the minimum distance will be reduced to below a selected range. Furthermore, if an object cannot be detected within or near a maximum distance, the projector operation may likewise be altered, for example the proximity detector may cause the projector to turn off.
    Type: Application
    Filed: December 5, 2007
    Publication date: June 11, 2009
    Applicant: Microvision, Inc.
    Inventors: Gregory T. Gibson, Joshua M. Hudman, Randall B. Sprague
  • Publication number: 20080225366
    Abstract: Briefly, in accordance with one or more embodiments, a prism capable of being utilized in a scanned beam projector comprises a first window disposed on a first surface through which the beam is capable of passing to impinge upon a scan engine at an angle of incidence off axis from an axis normal to a plane of the scan engine, and a second window disposed on a second surface through which the beam is capable of passing. The first surface of the prism is disposed at a non-parallel angle with respect to the second surface to reduce distortion of the scan pattern or image from the scan engine. The prism may further comprise one or more internal surfaces capable of reflecting the beam onto the scan engine off axis, where such reflecting may impart a desired polarization state to the beam reflected onto the scan engine.
    Type: Application
    Filed: April 18, 2008
    Publication date: September 18, 2008
    Applicant: MICROVISION, INC.
    Inventors: Joshua M. Hudman, Joshua O. Miller