Patents by Inventor Joshua Makower
Joshua Makower has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 6929009Abstract: Methods and apparatus for direct coronary revascularization wherein a transmyocardial passageway is formed between a chamber of the heart and a coronary blood vessel to permit blood to flow therebetween. In some embodiments, the transmyocardial passageway is formed between a chamber of the heart and a coronary vein. The invention includes unstented transmyocardial passageways, as well as transmyocardial passageways wherein protrusive stent devices extend from the transmyocardial passageway into an adjacent coronary vessel or chamber of the heart. The apparatus of the present invention include protrusive stent devices for stenting of transmyocardial passageways, intraluminal valving devices for valving of transmyocardial passageways, intracardiac valving devices for valving of transmyocardial passageways, endogenous tissue valves for valving of transmyocardial passageways, and ancillary apparatus for use in conjunction therewith.Type: GrantFiled: May 16, 2002Date of Patent: August 16, 2005Assignee: Medtronic Vascular, Inc.Inventors: Joshua Makower, J. Christopher Flaherty, Timothy R. Machold, Jason Brian Whitt, Margaret W. Tumas, Theodore C. Lamson, Marc Jensen
-
Publication number: 20050090748Abstract: Methods and apparatus for delivery of substances or apparatus to target sites located outside blood vessels within the body of a human or animal patient. A vessel wall penetrating catheter is inserted into the vasculature, positioned and oriented within a blood vessel near the target extravascular site and a penetrator is advanced from the catheter so as to penetrate outwardly through the wall of the blood vessel in the direction of the target site. Thereafter, a delivery catheter is passed through a lumen of the penetrator to the target site. A desired substance or apparatus is then delivered to or obtained from the target site. In some applications, the penetrator may be retracted into the vessel wall penetrating catheter and the vessel wall penetrating catheter may be removed, leaving the delivery catheter in place for chronic or continuous delivery of substance(s) to and/or obtaining of information or samples from the target site.Type: ApplicationFiled: June 10, 2003Publication date: April 28, 2005Inventors: Joshua Makower, Theodore Lamson, J. Flaherty, John Reggie, John Chang, Joseph Catanese, David Tholfsen
-
Patent number: 6863684Abstract: A plastically deformable stent for implantation within a body passage includes a plurality of cylindrical segments, and a plurality of connectors extending between adjacent segments. Each segment has an alternating pattern of curvilinear elements extending about its circumference, including first and second sets of curvilinear elements having different resistances to expansion, and preferably defining āUā shapes with alternating lengths that are connected to one another to define a substantially sinusoidal pattern. The connectors define a sinusoidal shape adapted to extend and compress axially substantially evenly when the adjacent segments are subjected to bending. The stent may be delivered on a device including an elongate member with a nose cone, an expandable member, and a proximal shoulder thereon, and an outer sheath for slidably receiving the elongate member therein. The outer sheath and/or nose cone may have perfusion holes for allowing continued perfusion of fluid during stent delivery.Type: GrantFiled: July 9, 2003Date of Patent: March 8, 2005Assignee: Medtronic Vascular, Inc.Inventors: Steven W. Kim, Joshua Makower, J. Christopher Flaherty
-
Publication number: 20040158143Abstract: A tissue penetrating catheter that is usable to advance a tissue penetrator from within a blood vessel, through the wall of the blood vessel to a target location. The catheter includes at least one stabilizing device thereon for stabilizing catheter prior to advancing the tissue penetrator. The tissue penetrator may extend through a lumen in the body of the catheter and project transversely through an exit port. The stabilizing device may be located closely adjacent to the exit port, or may surround the exit port. The stabilizing device may be one or more balloons, or other mechanical structure that is expandable into contact with the inner luminal wall of the blood vessel. Desirably, the exit port is forced into contact with the blood vessel wall to shorten the distance that the tissue penetrator projects from the catheter body to the target location. The catheter is particular useful for forming blood flow tracts between blood vessels, in particular in coronary revascularization procedures.Type: ApplicationFiled: February 5, 2004Publication date: August 12, 2004Applicant: Transvascular Inc.Inventors: J. Christopher Flaherty, Joshua Makower
-
Publication number: 20040147837Abstract: Electro-anatomically navigated catheters (e.g., mapping catheters, tissue penetrating catheters, delivery catheters and/or sheaths) and associated methods whereby devices or substances may be delivered to specific locations within a patient's body and/or penetration tracts or passageways are formed at specific locations between anatomical structures. The catheters are equipped with sensors and a sensing field is created around the body of the patient. The sensor-equipped catheters are then inserted into the patient's body and the position of the catheter-mounted sensor(s) is/are observed on a display representing the sensing field. Apparatus may be included for propelling the catheter(s) to specific locations and/or specific rotation orientations, within the patient's body.Type: ApplicationFiled: March 12, 2004Publication date: July 29, 2004Inventors: Patrick E Macaulay, Theodore C. Lamson, Joshua Makower, Isaac Han Joon Kim, Brian R. Beckey
-
Publication number: 20040138562Abstract: Methods and apparatus for delivery of substances or apparatus to target sites located outside blood vessels within the body of a human or animal patient. A vessel wall penetrating catheter is inserted into the vasculature, positioned and oriented within a blood vessel near the target extravascular site and a penetrator is advanced from the catheter so as to penetrate outwardly through the wall of the blood vessel in the direction of the target site. Thereafter, a delivery catheter is passed through a lumen of the penetrator to the target site. A desired substance or apparatus is then delivered to or obtained from the target site. In some applications, the penetrator may be retracted into the vessel wall penetrating catheter and the vessel wall penetrating catheter may be removed, leaving the delivery catheter in place for chronic or continuous delivery of substance(s) to and/or obtaining of information or samples from the target site.Type: ApplicationFiled: March 1, 2004Publication date: July 15, 2004Inventors: Joshua Makower, Theodore C. Lamson, J. Christopher Flaherty, John A. Reggie, Johny Y. Chang, Joseph Cantanese III, David R. Tholfsen
-
Publication number: 20040133154Abstract: A transvascular system (10) for delivering a drug to a tissue region from a blood vessel, such as a coronary vein, includes a catheter (12) having a distal portion (26) with puncturing (14), orientation (16), drug delivery (62), and imaging elements (18). The puncturing element (14) is deployable for penetrating the vessel wall to access the tissue region. The orientation element (16), e.g. a “cage” including a plurality of struts (38)(40) and/or a radiopaque marker, has a predetermined relationship with the puncturing element (14), the imaging element (18) detecting the location of the orientation element (16) with respect to the tissue region to orient the puncturing element. The catheter (12) is percutaneously introducing into the vessel, the puncturing element (14) is oriented towards the tissue region, the puncturing element (14) is deployed to access the tissue region, and the drug is delivered to the tissue region.Type: ApplicationFiled: December 16, 2003Publication date: July 8, 2004Inventors: J. Christopher Flaherty, Joshua Makower, Philip C. Evard, Patrick E. MacAulay, Jason B. Whitt, Robert C. Colloton, K. Angela MacFarlane
-
Publication number: 20040133225Abstract: Method and apparatus for utilizing the vascular system as a conduit to reach other vascular and extravascular locations within the body. Included are methods for revascularization wherein the extravascular passageways are formed to permit blood flow between vascular locations. Also included are methods for performing transvascular interstitial surgery (TVIS) wherein extravascular passageways are formed from a blood vessel to another vascular or non-vascular intracorporeal location. Also disclosed are devices usable for forming extravascular passageways in accordance with the invention, or for modifying, valving, maintaining or closing such passageways.Type: ApplicationFiled: August 14, 2003Publication date: July 8, 2004Applicant: TransVascular, Inc.Inventor: Joshua Makower
-
Publication number: 20040122318Abstract: A catheter device that is useable to penetrate from a blood vessel in which the catheter device is positioned to a target location comprises a flexible catheter advanceable into the first blood vessel, a tissue penetrator lumen adapted to receive an operative tissue penetrator which is usable to penetrate from the blood vessel to the target location when properly aimed. Further said catheter including an imaging transducer fixedly mounted on or within the catheter body to provide an imaging signal from which an image of the target location can be obtained. The catheter device may include an imageable marker on the catheter to form on the image obtainable from the imaging signal a penetrator path indication that indicates the path that will be followed by the tissue penetrator when the tissue penetrator exits from the catheter. Alternatively, or addition thereto, the imaging transducer may comprise a plurality of imaging elements which are located so that the penetrator path indication can be obtained.Type: ApplicationFiled: November 14, 2003Publication date: June 24, 2004Applicant: TransVascular, Inc.Inventors: J. Christopher Flaherty, Jason B. Whitt, John Y. Chang, David R. Tholfsen, Philip C. Evard, Joshua Makower
-
Patent number: 6746464Abstract: Method and apparatus for utilizing the vascular system as a conduit to reach other vascular and extravascular locations within the body. Included are methods for revascularization wherein the extravascular passageways are formed to permit blood flow between vascular locations. Also included are methods for performing transvascular interstitial surgery (TVIS) wherein extravascular passageways are formed from a blood vessel to another vascular or non-vascular intracorporeal location. Also disclosed are devices usable for forming extravascular passageways in accordance with the invention, or for modifying, valving, maintaining or closing such passageways.Type: GrantFiled: October 28, 1998Date of Patent: June 8, 2004Assignee: TransVascular, Inc.Inventor: Joshua Makower
-
Publication number: 20040098030Abstract: Methods and apparatus for occluding blood flow within a blood vessel. In a first series of embodiments, the present invention comprises a plurality of embolic devices deployable through the lumen of a conventional catheter such that when deployed, said embolic devices remain resident and occlude blood flow at a specific site within the lumen of the blood vessel. Such embolic devices comprise either mechanical embolic devices that become embedded within or compress against the lumen of the vessel or chemical vaso-occlusive agents that seal off blood flow at a given site. A second embodiment of the present invention comprises utilization of a vacuum/cauterizing device capable of sucking in the lumen of the vessel about the device to maintain the vessel in a closed condition where there is then applied a sufficient amount of energy to cause the tissue collapsed about the device to denature into a closure.Type: ApplicationFiled: August 29, 2003Publication date: May 20, 2004Applicant: Trans Vascular, Inc.Inventors: Joshua Makower, J. Christopher Flaherty, Timothy R. Machold, Jason B. Whitt, Philip C. Evard, Patrick E. Macaulay, John T. Garibotto, Marc Jensen
-
Publication number: 20040088042Abstract: Implantable connector devices which are useable to maintain fluidic connection between, or approximation of, openings formed in adjacent natural or prosthetic anatomical conduits (or adjacent openings formed in a single anatomical conduits). These connector devices generally comprise a plurality of radially expandable annular members having one or more elongate strut members extending therebetween. Initially, the device is mountable on or within a delivery catheter while in a radially compact configuration. After the delivery catheter has been inserted into the body, the device is caused to transition to a radially expanded configuration whereby it becomed implanted within the body so as to maintain the desired fluidic connection between, or the desired approximation of, the anatomical conduit(s).Type: ApplicationFiled: October 27, 2003Publication date: May 6, 2004Applicant: TransVascular, Inc.Inventors: Steven Kim, J. Christopher Flaherty, Jason Brian Whitt, Theodore C. Lamson, Joshua Makower
-
Patent number: 6726677Abstract: A tissue penetrating catheter that is usable to advance a tissue penetrator from within a blood vessel, through the wall of the blood vessel to a target location. The catheter includes at least one stabilizing device thereon for stabilizing catheter prior to advancing the tissue penetrator. The tissue penetrator may extend through a lumen in the body of the catheter and project transversely through an exit port. The stabilizing device may be located closely adjacent to the exit port, or may surround the exit port. The stabilizing device may be one or more balloons, or other mechanical structure that is expandable into contact with the inner luminal wall of the blood vessel. Desirably, the exit port is forced into contact with the blood vessel wall to shorten the distance that the tissue penetrator projects from the catheter body to the target location. The catheter is particular useful for forming blood flow tracts between blood vessels, in particular in coronary revascularization procedures.Type: GrantFiled: March 29, 2000Date of Patent: April 27, 2004Assignee: TransVascular, Inc.Inventors: J. Christopher Flaherty, Joshua Makower
-
Publication number: 20040073238Abstract: Devices, systems and methods for transvascular interstitial interventions, including transvascular, catheter based vascular bypass, transmyocardial revascularization, bypass grafting of blood vessels, and interstitial surgical/interventional procedures wherein a catheter is advanced translumenally through the vasculature to a desired location and an operative instrument is passed through the wall of a blood vessel and to a target location (e.g. another blood vessel, an organ, a tumor, another anatomical structure) such that one or more operative devices may be advanced to the target location to perform the desired operative or interventional procedure.Type: ApplicationFiled: April 29, 2003Publication date: April 15, 2004Applicant: TransVascular, Inc.Inventor: Joshua Makower
-
Publication number: 20040059280Abstract: Methods, devices, and systems for a) revascularization and/or b) performing other medical procedures at vascular or non-vascular intracorporeal locations within a mammalian body. The methods generally comprise the formation of at least one extravascular passageway from a blood vessel to a vascular or non-vascular target location. In the revascularization methods the extravascular passageway is utilized for blood flow. In the medical procedure methods the extravascular passageway is utilized as a conduit for accessing or performing procedures at the vascular or non-vascular target location. Also disclosed are catheter devices and systems which are useable to form the extravascular passageways of the invention, as well as apparatus for modifying, maintaining and/or closing such extravascular passageways.Type: ApplicationFiled: April 29, 2003Publication date: March 25, 2004Applicant: Trans Vascular, Inc.Inventors: Joshua Makower, J. Christopher Flaherty, Timothy R. Machold, Jason Brian Whitt, Philip Christopher Evard, Patrick Edward Macaulay, John Thomas Garibotto, Claude A. Vidal, Russell J. Redmond, Thomas Banks
-
Patent number: 6709444Abstract: Methods for bypassing total or near-total obstructions in arteries or other anatomical conduits. A guidewire is advanced through the lumen of the artery or anatomical conduit upstream of the obstruction and past the obstruction. In navigating past the obstruction, this guidewire may advance through tissue that is located within the wall of the artery or anatomical conduit and/or through tissue that is located outside of the wall of the artery or anatomical conduit. After this guidewire has been advanced past the obstruction, a penetrating catheter that is equipped with an orientation element is advanced over that guidewire. The orientation element is then used to aim a penetrator back into the lumen of the obstructed artery or conduit, downstream of the obstruction. The penetrator is then advanced into the lumen of the obstructed artery or conduit, downstream of the obstruction, and a final guidewire is advanced through the penetrator and into the lumen of the artery or conduit downstream of the obstruction.Type: GrantFiled: May 17, 2001Date of Patent: March 23, 2004Assignee: TransVascular, Inc.Inventor: Joshua Makower
-
Patent number: 6685648Abstract: A method is provided for delivering a drug to a selected tissue region within a patient's body with a catheter having a deployable puncturing element, a drug delivery element and an orientation element on a distal portion thereof. The distal portion of the catheter is percutaneously introduced into a blood vessel, and directed endovascularly to a vessel location adjacent to the selected tissue region. The puncturing element is oriented towards the selected tissue region, and deployed to access the selected tissue region. A drug is delivered with the drug delivery element to the selected tissue region.Type: GrantFiled: April 3, 2001Date of Patent: February 3, 2004Assignee: Transvascular, Inc.Inventors: J. Christopher Flaherty, Joshua Makower, Philip C. Evard, Patrick E. MacAulay, Jason B. Whitt, Robert C. Colloton, K. Angela Macfarlane
-
Publication number: 20040015225Abstract: A plastically deformable stent for implantation within a body passage includes a plurality of cylindrical segments, and a plurality of connectors extending between adjacent segments. Each segment has an alternating pattern of curvilinear elements extending about its circumference, including first and second sets of curvilinear elements having different resistances to expansion, and preferably defining “U” shapes with alternating lengths that are connected to one another to define a substantially sinusoidal pattern. The connectors define a sinusoidal shape adapted to extend and compress axially substantially evenly when the adjacent segments are subjected to bending. The stent may be delivered on a device including an elongate member with a nose cone, an expandable member, and a proximal shoulder thereon, and an outer sheath for slidably receiving the elongate member therein. The outer sheath and/or nose cone may have perfusion holes for allowing continued perfusion of fluid during stent delivery.Type: ApplicationFiled: July 9, 2003Publication date: January 22, 2004Inventors: Steven W. Kim, Joshua Makower, J. Christopher Flaherty
-
Publication number: 20040015193Abstract: Methods and devices for implanting pacing electrodes or other apparatus, or for delivering substances, to the heart of other tissues within the body. A guided tissue penetrating catheter is inserted into a body lumen (e.g., blood vessel) or into a body cavity or space (e.g., the pericardial space) and a penetrator is advanced from the catheter to a target location. In some embodiments, a substance or an apparatus (such as an electrode) may be delivered through a lumen in the penetrator. In other embodiments, a guidewire may be advanced through the penetrator, the penetrating catheter may then be removed and an apparatus (e.g., electrode) may then be advanced over that guidewire. Also disclosed are various implantable electrodes and electrode anchoring apparatus.Type: ApplicationFiled: April 11, 2003Publication date: January 22, 2004Applicant: Transvascular, Inc.Inventors: Theodore C. Lamson, Joshua Makower, J. Christopher Flaherty
-
Publication number: 20030236542Abstract: Methods for bypassing total or near-total obstructions in arteries or other anatomical conduits. A guidewire is advanced through the lumen of the artery or anatomical conduit upstream of the obstruction and past the obstruction. In navigating past the obstruction, this guidewire may advance through tissue that is located within the wall of the artery or anatomical conduit and/or through tissue that is located outside of the wall of the artery or anatomical conduit. After this guidewire has been advanced past the obstruction, a penetrating catheter that is equipped with an orientation element is advanced over that guidewire. The orientation element is then used to aim a penetrator back into the lumen of the obstructed artery or conduit, downstream of the obstruction. The penetrator is then advanced into the lumen of the obstructed artery or conduit, downstream of the obstruction, and a final guidewire is advanced through the penetrator and into the lumen of the artery or conduit downstream of the obstruction.Type: ApplicationFiled: February 19, 2003Publication date: December 25, 2003Applicant: TransVascular, Inc.Inventor: Joshua Makower