Patents by Inventor Joshua P. Morgan

Joshua P. Morgan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210338371
    Abstract: A gyroscopic stabilizer configured to stabilize a surgical instrument relative to a patient includes a frame having a central axis and a hub configured to releasably couple with the surgical instrument. A first gyroscope assembly is coupled with a first frame portion and a second gyroscope assembly is coupled with a second frame portion. Each gyroscope assembly includes a gimbal pivotably coupled with the respective frame portion about a precession axis, a motor, and a rotor rotatably coupled with the motor about a spin axis perpendicular to the respective precession axis. Each gyroscope assembly is operable generate a torque in a torque plane that contains the respective spin axis and the respective precession axis. The torques are configured to resist rotation of the gyroscopic stabilizer relative to the patient about respective device axes that are perpendicular to the central axis and to one another.
    Type: Application
    Filed: March 26, 2021
    Publication date: November 4, 2021
    Inventors: Demetrius N. Harris, Mark S. Zeiner, Joseph Isosaki, David C. Perdue, Nicholas M. Morgan, Joshua P. Morgan
  • Publication number: 20210196349
    Abstract: An electrosurgical instrument comprising a housing, a shaft extending from the housing, an end effector extending from the shaft, an articulation joint rotatably connecting the end effector to the shaft, and a wiring circuit is disclosed. The housing comprises a printed control board. The wiring circuit extends from the printed control board through the shaft and into the end effector. The wiring circuit is configured to monitor a function of the end effector and communicate the monitored function to the printed control board. The wiring circuit comprises a proximal rigid portion fixed to the shaft, a distal rigid portion fixed to the end effector, and an intermediate portion extending from the proximal rigid portion to the distal rigid portion. The intermediate portion comprises a resilient portion and a stretchable portion.
    Type: Application
    Filed: May 28, 2020
    Publication date: July 1, 2021
    Inventors: Kevin M. Fiebig, Sarah A. Worthington, Joshua P. Morgan, Nicholas M. Morgan, Frederick E. Shelton, IV
  • Publication number: 20210196350
    Abstract: A surgical instrument comprising a motor assembly, a shaft defining a shaft axis, a distal head, a rotary drive member, and a distal head lock member movable between a first position where the distal head is unlocked from the shaft and a second position where the distal head is locked to the shaft is disclosed. The motor assembly comprises a motor and a controller configured to operate the motor in first and second operating modes. The distal head comprises an end effector movable between an open configuration and a closed configuration. The distal head is rotated about the shaft axis when the distal head lock member is in the first position and the rotary drive member is actuated. The end effector is moved from the open configuration toward the closed configuration when the distal head lock member is in the second position and the rotary drive member is actuated.
    Type: Application
    Filed: May 28, 2020
    Publication date: July 1, 2021
    Inventors: Kevin M. Fiebig, Joshua P. Morgan, Nicholas M. Morgan, Frederick E. Shelton, IV
  • Publication number: 20210196354
    Abstract: A method for performing an electrosurgical procedure using an electrosurgical instrument including an end effector is disclosed. The method comprises applying a bipolar energy to a target tissue grasped by the end effector in a tissue-feathering segment, applying an energy blend of the bipolar energy and a monopolar energy to the target tissue in a tissue-warming segment and a tissue-sealing segment following the tissue-warming segment, and discontinuing the bipolar energy but continuing to apply the monopolar energy to the target tissue in a tissue-cutting segment following the tissue-sealing segment.
    Type: Application
    Filed: May 28, 2020
    Publication date: July 1, 2021
    Inventors: Frederick E. Shelton, IV, Kevin M. Fiebig, Taylor W. Aronhalt, Jeffrey D. Messerly, Mark S. Zeiner, Sarah A. Worthington, Joshua P. Morgan, Nicholas M. Morgan
  • Publication number: 20200405403
    Abstract: A method of using a surgical modular robotic assembly including an interchangeable motor pack, a hand-held surgical instrument, and a robotic surgical instrument is disclosed. The method includes releasably attaching an interface portion of the interchangeable motor pack to the hand-held surgical instrument, causing the interchangeable motor pack to drive a first surgical tool of the hand-held surgical instrument, stopping the interchangeable motor pack from driving the first surgical tool, disconnecting the interface portion from the hand-held surgical instrument, and releasably attaching the interface portion of the interchangeable motor pack to the robotic surgical instrument.
    Type: Application
    Filed: June 27, 2019
    Publication date: December 31, 2020
    Inventors: Frederick E. Shelton, IV, Jason L. Harris, Nicholas M. Morgan, Joshua P. Morgan, Christopher J. Hess, Chad E. Eckert, Daniel J. Mumaw, Kevin M. Fiebig
  • Publication number: 20200405406
    Abstract: Various connection detection assemblies for a robotic surgical assembly are disclosed. The robotic surgical assembly can include a carriage, a carriage housing releasably connectable to the carriage, a motor housing configured to house a motor pack for driving the surgical instrument, wherein the motor housing is releasable connectable to the carriage housing, and an interface module configured to releasably secure the robotic surgical assembly to the surgical instrument. The robotic surgical assembly can also include a series of interconnections defined by mating portions of the carriage, the carriage housing, the motor housing, and the interface module. A control circuit configured to detect a fully engaged configuration of the mating portions based on the interconnections.
    Type: Application
    Filed: June 27, 2019
    Publication date: December 31, 2020
    Inventors: Jason L. Harris, Frederick E. Shelton, IV, Chad E. Eckert, Joshua P. Morgan, Nicholas M. Morgan
  • Publication number: 20200405415
    Abstract: Various cooling systems are disclosed for a robotic surgical system that comprises a robotic arm and an end effector movable by the robotic arm. A cooling assembly can comprise a first enclosure within a sterile environment and a second enclosure external to the sterile environment. The first enclosure can be fluidically isolated from the sterile environment. The first enclosure can comprises or house a motor configured to actuate the end effector in the sterile environment. The first enclosure and the second enclosure can be thermally and fluidically coupled to transfer thermal energy from the motor housed within the first enclosure.
    Type: Application
    Filed: June 27, 2019
    Publication date: December 31, 2020
    Inventors: Frederick E. Shelton, IV, Jason L. Harris, Nicholas M. Morgan, Joshua P. Morgan, Christopher J. Hess, Chad E. Eckert
  • Publication number: 20200314569
    Abstract: An audio control system for a modular energy system. The audio control system can include a first controller and a second controller. The first controller can be configured to output an audio signal and an audio signal ID associated with the audio signal. The second controller can be coupled to the first controller and configured to receive the audio signal ID from the first controller and determine whether the audio signal ID corresponds to an expected audio signal ID.
    Type: Application
    Filed: September 5, 2019
    Publication date: October 1, 2020
    Inventors: Joshua P. Morgan, James M. Vachon, Andrew W. Carroll
  • Publication number: 20200305945
    Abstract: A modular surgical system for use in a surgical procedure is disclosed. The modular surgical system includes a control module, a first surgical module arrangeable in a stack configuration with the control module, and a second surgical module arrangeable in a stack configuration with the control module and the first surgical module. The first surgical module includes a first counter module, a first stop-counter module configured to receive a sequence signal that causes the first stop-counter module to disable the first counter module from incrementing at a first final count, and a first delay module. The second surgical module includes a second counter module and a second stop-counter module configured to receive the sequence signal from the first surgical module after a predetermined delay. The sequence signal causes the second stop-counter module to disable the second counter module from incrementing at a second final count.
    Type: Application
    Filed: September 5, 2019
    Publication date: October 1, 2020
    Inventors: Joshua P. Morgan, Joshua Henderson
  • Patent number: 10639038
    Abstract: A surgical instrument includes a body, a shaft assembly, an end effector, and an electrical contact assembly. The body includes a power source. The shaft assembly extends distally from the body, the end effector is distal of the shaft assembly. The end effector includes a channel assembly and a cartridge assembly. The cartridge assembly may selectively couple with the channel assembly. The cartridge assembly includes an electrically activated component. The electrical contact assembly is configured to electrically couple the power source with the electrically activated component. The electrical contact assembly includes a first electrical contact associated with the channel assembly, a second electrical contact associated with the channel assembly, and a hydrophobic layer extending between the first electrical contact and the second electrical contact.
    Type: Grant
    Filed: March 23, 2018
    Date of Patent: May 5, 2020
    Assignee: Ethicon LLC
    Inventors: Gregory G. Scott, Stephen D. Geresy, Yvan D. Nguetio Tchoumkeu, Laura A. Schoettmer, Andrew Kolpitcke, Sarah A. Worthington, Joshua P. Morgan, Scott A. Jenkins, Nicholas D. Courtwright, Alexander R. Cuti, Taylor W. Aronhalt, Jeffery D. Bruns, John E. Brady, Nichole Y. Kwee, Gregory J. Bakos, Frederick E. Shelton, IV
  • Patent number: 10631860
    Abstract: A surgical instrument includes a body, a shaft assembly, an end effector, and an electrical contact assembly. The includes a power source, while the shaft assembly extends distally from the body. The end effector includes a channel assembly and a cartridge assembly configured to selectively couple with the channel assembly. The cartridge assembly includes an electrically activated component. The electrical contact assembly is capable of electrically coupling the power source with the electrically activated component of the cartridge assembly. The electrical contact assembly includes a first electrical contact, a second electrical contact, and an insulating membrane. The first electrical contact is associated with the channel assembly while the second electrical contact is associated with the cartridge assembly. The insulating membrane is associated with either the first electrical contact or the second electrical contact.
    Type: Grant
    Filed: March 23, 2018
    Date of Patent: April 28, 2020
    Assignee: Ethicon LLC
    Inventors: Gregory J. Bakos, Frederick E. Shelton, IV, Gregory G. Scott, Stephen D. Geresy, Yvan D. Nguetio Tchoumkeu, Amy M. Krumm, Grace E. Waters, Prudence A. Vulhop, Nichole Y. Kwee, John E. Brady, Scott A. Jenkins, Laura A. Schoettmer, Andrew Kolpitcke, Joshua P. Morgan, Sarah A. Worthington, Taylor W. Aronhalt, Alexander R. Cuti
  • Publication number: 20200106220
    Abstract: An energy module is disclosed. The energy module includes a hand-switch circuit, a surgical instrument interface coupled to the hand-switch circuit, and a control circuit coupled to the surgical instrument interface and the hand-switch circuit. The control circuit is configured to control the hand-switch circuit to communicate with a surgical instrument coupled to the hand-switch circuit using a plurality of communication protocols over a single wire. The control circuit is configured to control the hand-switch circuit to supply power to the instrument over the single wire.
    Type: Application
    Filed: September 5, 2019
    Publication date: April 2, 2020
    Inventors: Joshua Henderson, Joshua P. Morgan, Andrew W. Carroll, Jeffrey L. Aldridge, Eitan T. Wiener, James M. Vachon
  • Publication number: 20200100825
    Abstract: A method for controlling an output of an energy module of a modular energy system is disclosed. The modular energy system includes a header module, the energy module, and a secondary module communicably coupled together. The energy module configured to provide an output driving an energy modality deliverable by a surgical instrument connected thereto. The method includes causing the energy module to provide the output driving the energy modality delivered by the surgical instrument; sensing a parameter associated with the secondary module; receiving the parameter as sensed by the secondary module at the energy module; and adjusting the output of the energy module from a first state to a second state according to the received parameter.
    Type: Application
    Filed: September 5, 2019
    Publication date: April 2, 2020
    Inventors: Joshua Henderson, Joshua P. Morgan, Andrew W. Carroll, Jeffrey L. Aldridge, Eitan T. Wiener, James M. Vachon, Gregory J. Bakos
  • Publication number: 20200100830
    Abstract: A method for constructing a modular surgical system is disclosed. The method comprises providing a header module comprising a first power backplane segment, providing a surgical module comprising a second power backplane segment, assembling the header module and the surgical module to electrically couple the first power backplane segment and the second power backplane segment to each other to form a power backplane, and applying power to the surgical module through the power backplane.
    Type: Application
    Filed: September 5, 2019
    Publication date: April 2, 2020
    Inventors: Joshua Henderson, Joshua P. Morgan, Andrew W. Carroll, Jeffrey L. Aldridge, Eitan T. Wiener, James M. Vachon, Ryan M. Asher, John B. Schulte, John E. Hein, James R. Hoch, Gregory J. Bakos
  • Publication number: 20200078117
    Abstract: An energy module connectable to a surgical instrument is disclosed. The energy module can include a circuit, which can include a first amplifier and a second amplifier coupled to a port of the energy module to which a surgical instrument is connectable. The first amplifier can be configured to generate a first drive signal at a first frequency range and the second amplifier can be configured to generate a second drive signal at a second frequency range. The circuit can be configured to control the amplifiers to deliver the first drive signal, the second drive signal, and/or a combination of the first and second drive signals to a surgical instrument connected to the port.
    Type: Application
    Filed: September 5, 2019
    Publication date: March 12, 2020
    Inventors: Joshua Henderson, Joshua P. Morgan, Andrew W. Carroll, Jeffrey L. Aldridge, Eitan T. Wiener, Ryan M. Asher, John B. Schulte, John E. Hein, James R. Hoch
  • Publication number: 20200078070
    Abstract: A method of operating a modular surgical system including a control module, a first surgical module, and a second surgical module is disclosed. The method includes detachably connecting the first surgical module to the control module by stacking the first surgical module with the control module in a stack configuration, detachably connecting the second surgical module to the first surgical module by stacking the second surgical module with the control module and the first surgical module in the stack configuration, powering up the modular surgical system, and monitoring distribution of power from a power supply of the control module to the first surgical module and the second surgical module.
    Type: Application
    Filed: September 5, 2019
    Publication date: March 12, 2020
    Inventors: Joshua Henderson, Joshua P. Morgan, Andrew W. Carroll, Jeffrey L. Aldridge, Eitan T. Wiener, Ryan M. Asher, John B. Schulte, Gregory J. Bakos
  • Publication number: 20200078119
    Abstract: A modular surgical system is disclosed. The modular surgical system comprises a header module, a first surgical module, a second surgical module, and a module identification circuit. The second surgical module is arrangeable in a stack configuration with the header module and the first surgical module. The module identification circuit is configured to cause a pre-determined current to be transmitted to the first surgical module through the second surgical module in the stack configuration, detect a first voltage indicative of a first position of the first surgical module in the stack configuration, and detect a second voltage indicative of a second position of the second surgical module in the stack configuration. The second voltage is different than the first voltage.
    Type: Application
    Filed: September 5, 2019
    Publication date: March 12, 2020
    Inventors: Joshua Henderson, Joshua P. Morgan, Andrew W. Carroll, Jeffrey L. Aldridge, Eitan T. Wiener
  • Publication number: 20200078110
    Abstract: A modular energy system including a header module and a module. The header module includes a display screen for displaying a user interface. The header module is configured to receive data, including safety critical data, from the module, control the display screen to cause the UI to display UI content based on the received data, the UI content including safety critical UI content based on the safety critical data, and transmit the displayed safety critical UI content to the module for verification thereby. The module is configured to confirm whether the transmitted safety critical data coincides with the displayed safety critical UI content. In the event that it is determined that they do not coincide, the header module and/or the module can be configured to stop the function(s) of the module, display an alert on the display screen, and take various other actions.
    Type: Application
    Filed: September 5, 2019
    Publication date: March 12, 2020
    Inventors: Joshua Henderson, Joshua P. Morgan, Andrew W. Carroll, Jeffrey L. Aldridge, Eitan T. Wiener, James M. Vachon
  • Publication number: 20200078118
    Abstract: A modular surgical system for use in a surgical procedure is disclosed. The modular surgical system includes a control module including a power supply and surgical modules including a first surgical module and a second surgical module. The first surgical module is arranged in a stack configuration with the control module and the second surgical module. The power supply is configured to output power to the first surgical module and the second surgical module. A power backplane is configured to deliver the power to the first surgical module and the second surgical module through the first surgical module. A control circuit is configured to adaptively adjust power allocations to the first surgical module and the second surgical module.
    Type: Application
    Filed: September 5, 2019
    Publication date: March 12, 2020
    Inventors: Joshua Henderson, Joshua P. Morgan, Andrew W. Carroll, Jeffrey L. Aldridge, Eitan T. Wiener, James M. Vachon
  • Publication number: 20200078076
    Abstract: A method for controlling an output of an energy module of a modular energy system. The energy module can comprise a plurality of amplifiers configured to generate a drive signal at a frequency range and a plurality of ports coupled to the plurality of amplifiers. The method includes determining to which port of the plurality of ports the surgical instrument is connected, selectively coupling an amplifier of the plurality of amplifiers to the port of the plurality of ports to which the surgical instrument is connected, and controlling the amplifier to deliver the drive signal for driving the energy modality to the surgical instrument through the port.
    Type: Application
    Filed: September 5, 2019
    Publication date: March 12, 2020
    Inventors: Joshua Henderson, Joshua P. Morgan, Eitan T. Wiener, John E. Hein, James R. Hoch, Gregory J. Bakos