Patents by Inventor Joshua Persky

Joshua Persky has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240417867
    Abstract: A reactor assembly includes a multiplicity of electrochemical reactors, wherein each of the electrochemical reactors comprises an anode, a cathode, and a membrane between and in contact with the anode and the cathode, wherein the anode or the cathode forms a fluid passage having an inlet and an outlet, wherein the surface area of the fluid passage in contact with the anode or cathode is at least 25 times of the combined cross-sectional area of the inlet and the outlet; wherein the minimum distance between the reactors is no greater than 2 cm; and wherein the reactors have no interconnects and no direct contact with one another.
    Type: Application
    Filed: April 19, 2024
    Publication date: December 19, 2024
    Applicant: Utility Global, Inc.
    Inventors: Matthew Dawson, Thomas Stilson, Hsuan-Yu Leu, Joshua Persky
  • Publication number: 20240417869
    Abstract: An electrochemical reactor includes an anode, a cathode, and a membrane between and in contact with the anode and the cathode, wherein the anode or the cathode forms a fluid passage having an inlet and an outlet, wherein the surface area of the fluid passage in contact with the anode or cathode is at least 25 times of the combined cross-sectional area of the inlet and the outlet. Further discussed herein is an electrochemical reactor comprising an anode, a cathode, and a membrane between and in contact with the anode and the cathode, wherein the anode or the cathode forms a fluid passage having an inlet and an outlet, wherein a tortuosity of the fluid passage is no less than 10, wherein tortuosity is the ratio of fluid flow path length to the straight distance between the inlet and the outlet.
    Type: Application
    Filed: April 19, 2024
    Publication date: December 19, 2024
    Applicant: Utility Global, Inc.
    Inventors: Matthew Dawson, Thomas Stilson, Hsuan-Yu Leu, Joshua Persky
  • Publication number: 20240287688
    Abstract: A device including a metal chamber having a first internal space defined by at least one metal chamber wall; a plate in the first internal space; and a ceramic chamber having a second internal space defined by at least one ceramic chamber wall, a closed bend, and two openings, wherein the ceramic chamber is inside the metal chamber and the second internal space penetrates the plate such that the two openings and the closed bend are on opposite sides of the plate; wherein the first and second internal spaces are not in fluid communication with one another.
    Type: Application
    Filed: February 5, 2024
    Publication date: August 29, 2024
    Applicant: Utility Global, Inc.
    Inventors: Matthew Dawson, Joshua Persky
  • Publication number: 20240287689
    Abstract: Herein discussed is a device comprising a metal chamber having a first internal space; a plate and a connector in the first internal space; and a ceramic chamber having a second internal space, wherein the ceramic chamber is inside the metal chamber and the second internal space penetrates the plate; wherein the plate is configured to expand or contract and remain in contact with the connector such that the first and second internal spaces are not in fluid communication with one another. In an embodiment, the ceramic chamber wall is in contact with the plate but does not penetrate the plate. In an embodiment, the device produces no electricity and receives no electricity.
    Type: Application
    Filed: February 5, 2024
    Publication date: August 29, 2024
    Applicant: Utility Global, Inc.
    Inventors: Matthew Dawson, Roderick Sidwell, Paul Matthews, Joshua Persky
  • Publication number: 20240209530
    Abstract: Herein discussed is a device comprising an anode, a cathode, an electrolyte in contact with the anode and the cathode, and an interconnect, wherein the anode and the cathode are short circuited via electronic communication through the interconnect. In an embodiment, the anode and the cathode are separated by the electrolyte and the interconnect.
    Type: Application
    Filed: November 14, 2023
    Publication date: June 27, 2024
    Applicant: Utility Global, Inc.
    Inventors: Matthew Dawson, Joshua Persky
  • Patent number: 11784331
    Abstract: A solid oxide fuel cell (SOFC) system included high thermal conductivity materials such as copper 10 increase thermal energy transfer by thermal conduction. The copper is protected from oxidation by nickel electroplating and protected from thermal damage by providing Hastelloy liners inside combustion chambers. Monel elements are used in the incoming air conduits to prevent cathode poisoning.
    Type: Grant
    Filed: February 3, 2021
    Date of Patent: October 10, 2023
    Assignee: UPSTART POWER, INC.
    Inventors: Nathan Palumbo, Paul Osenar, Joshua Persky
  • Publication number: 20210167406
    Abstract: A solid oxide fuel cell (SOFC) system included high thermal conductivity materials such as copper 10 increase thermal energy transfer by thermal conduction. The copper is protected from oxidation by nickel electroplating and protected from thermal damage by providing Hastelloy liners inside combustion chambers. Monel elements are used in the incoming air conduits to prevent cathode poisoning.
    Type: Application
    Filed: February 3, 2021
    Publication date: June 3, 2021
    Applicant: Upstart Power, Inc.
    Inventors: Nathan Palumbo, Paul Osenar, Joshua Persky
  • Patent number: 10916784
    Abstract: A solid oxide fuel cell (SOFC) system included high thermal conductivity such as copper materials such as copper to increase thermal energy transfer by thermal conduction. The copper is protected from oxidation by nickel electroplating and protected from thermal damage by providing Hastelloy liners inside combustion chambers.
    Type: Grant
    Filed: August 28, 2019
    Date of Patent: February 9, 2021
    Assignee: Upstart Power, Inc.
    Inventors: Nathan Palumbo, Paul Osenar, Joshua Persky
  • Patent number: 10573911
    Abstract: A solid oxide fuel cell (SOFC) system includes inner and outer enclosure walls each formed as an independent thermally conductive path. Each thermally conductive path comprises materials having a coefficient of thermal conductivity of greater than 100 W/m° K. The inner and outer enclosure walls are each thermally conductively coupled with an annular enclosure formed to enclose a fuel reformer module. The annular enclosure provides a fourth thermally conductive path disposed between the inner and outer enclosure walls having a coefficient of thermal conductivity of 50 W/m° K or less. A temperature sensor and thermal fuse are mounted to an outside surface of the outer enclosure. An active sensor and a passive fuse are provided to interrupt a flow of fuel into the fuel reformer when a temperature of the outer enclosure walls equal or exceed a failsafe operating temperature.
    Type: Grant
    Filed: October 6, 2016
    Date of Patent: February 25, 2020
    Assignee: Upstart Power, Inc.
    Inventors: Nathan Palumbo, Joshua Persky
  • Publication number: 20190393521
    Abstract: A solid oxide fuel cell (SOFC) system included high thermal conductivity such as copper materials such as copper to increase thermal energy transfer by thermal conduction. The copper is protected from oxidation by nickel electroplating and protected from thermal damage by providing Hastelloy liners inside combustion chambers.
    Type: Application
    Filed: August 28, 2019
    Publication date: December 26, 2019
    Applicant: Upstart Power, Inc.
    Inventors: Nathan Palumbo, Paul Osenar, Joshua Persky
  • Patent number: 10446858
    Abstract: A solid oxide fuel cell (SOFC) system included high thermal conductivity materials such as copper to increase thermal energy transfer by thermal conduction. The copper is protected from oxidation by nickel electroplating and protected from thermal damage by providing Hastelloy liners inside combustion chambers. Monel elements are used in the incoming air conduits to prevent cathode poisoning.
    Type: Grant
    Filed: October 7, 2014
    Date of Patent: October 15, 2019
    Assignee: Upstart Power, Inc.
    Inventors: Nathan Palumbo, Paul Osenar, Joshua Persky
  • Patent number: 10109867
    Abstract: A rod assembly and method for supporting rods includes opposing end plates for supporting opposing ends of a plurality of solid oxide fuel cell rods with each rod comprising a hollow gas conduit passing there through. Each rod end is supported by an annular flexure configured to provide a gas/liquid tight seal between the rod ends and the end plates. Each annular flexure includes a flexible portion surrounding the rod end such that forces imparted to either or both of the rod and the end plate act to elastically deform the annular flexure without damaging the rods. The rod assembly operates and a Solid Oxide Fuel Cell (SOFC) with operating temperatures of 500 to 1000° C.
    Type: Grant
    Filed: June 26, 2013
    Date of Patent: October 23, 2018
    Assignee: Upstart Power, Inc.
    Inventors: Nathan Palumbo, Joshua Persky, Brendan Heinig, Peter F. Simpson, William Pink
  • Publication number: 20170110748
    Abstract: A solid oxide fuel cell (SOFC) system includes inner and outer enclosure walls each formed as an independent thermally conductive path. Each thermally conductive path comprises materials having a coefficient of thermal conductivity of greater than 100 W/m° K. The inner and outer enclosure walls are each thermally conductively coupled with an annular enclosure formed to enclose a fuel reformer module. The annular enclosure provides a fourth thermally conductive path disposed between the inner and outer enclosure walls having a coefficient of thermal conductivity of 50 W/m° K or less. A temperature sensor and thermal fuse are mounted to an outside surface of the outer enclosure. An active sensor and a passive fuse are provided to interrupt a flow of fuel into the fuel reformer when a temperature of the outer enclosure walls equal or exceed a failsafe operating temperature.
    Type: Application
    Filed: October 6, 2016
    Publication date: April 20, 2017
    Inventors: Nathan Palumbo, Joshua Persky
  • Publication number: 20160099476
    Abstract: A solid oxide fuel cell (SOFC) system included high thermal conductivity materials such as copper to increase thermal energy transfer by thermal conduction. The copper is protected from oxidation by nickel electroplating and protected from thermal damage by providing Hastelloy liners inside combustion chambers. Monel elements are used in the incoming air conduits to prevent cathode poisoning.
    Type: Application
    Filed: October 7, 2014
    Publication date: April 7, 2016
    Applicant: PROTONEX TECHNOLOGY CORPORATION
    Inventors: Nathan Palumbo, Paul Osenar, Joshua Persky
  • Publication number: 20150004528
    Abstract: A rod assembly and method for supporting rods includes opposing end plates for supporting opposing ends of a plurality of solid oxide fuel cell rods with each rod comprising a hollow gas conduit passing there through. Each rod end is supported by an annular flexure configured to provide a gas/liquid tight seal between the rod ends and the end plates. Each annular flexure includes a flexible portion surrounding the rod end such that forces imparted to either or both of the rod and the end plate act to elastically deform the annular flexure without damaging the rods. The rod assembly operates and a Solid Oxide Fuel Cell (SOFC) with operating temperatures of 500 to 1000° C.
    Type: Application
    Filed: June 26, 2013
    Publication date: January 1, 2015
    Inventors: Nathan Palumbo, Joshua Persky, Brendan Heinig, Peter F. Simpson, William Pink
  • Patent number: 8512871
    Abstract: A workpiece, such as a turbine engine component, comprises a substrate, a thermal barrier coating on the substrate, and a hard erosion barrier deposited over the thermal barrier coating. The erosion barrier preferably has a Vickers hardness in the range of from 1300 to 2750 kg/mm2. The erosion barrier may be formed from aluminum oxide, silicon carbide, silicon nitride, or molybdenum disilicide. The erosion barrier may be formed using either an electrophoretic deposition process or a slurry process.
    Type: Grant
    Filed: May 30, 2006
    Date of Patent: August 20, 2013
    Assignee: United Technologies Corporation
    Inventors: Joshua Persky, David A. Litton, David L. Lambert
  • Patent number: 8470458
    Abstract: A workpiece, such as a turbine engine component, comprises a substrate, a thermal barrier coating on the substrate, and a hard erosion barrier deposited over the thermal barrier coating. The erosion barrier preferably has a Vickers hardness in the range of from 1300 to 2750 kg/mm2. The erosion barrier may be formed from aluminum oxide, silicon carbide, silicon nitride, or molybdenum disilicide. The erosion barrier may be formed using either an electrophoretic deposition process or a slurry process.
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: June 25, 2013
    Assignee: United Technologies Corporation
    Inventors: Joshua Persky, David A Litton, David A Lambert
  • Publication number: 20100247323
    Abstract: A workpiece, such as a turbine engine component, comprises a substrate, a thermal barrier coating on the substrate, and a hard erosion barrier deposited over the thermal barrier coating. The erosion barrier preferably has a Vickers hardness in the range of from 1300 to 2750 kg/mm2. The erosion barrier may be formed from aluminum oxide, silicon carbide, silicon nitride, or molybdenum disilicide. The erosion barrier may be formed using either an electrophoretic deposition process or a slurry process.
    Type: Application
    Filed: May 30, 2006
    Publication date: September 30, 2010
    Inventors: Joshua Persky, David A. Litton, David L. Lambert
  • Patent number: 7575039
    Abstract: A refractory metal core for use in a casting system has a coating for providing oxidation resistance during shell fire and protection against reaction/dissolution during casting. In a first embodiment, the coating includes at least one oxide and a silicon containing material. In a second embodiment, the coating includes an oxide selected from the group of calcia, magnesia, alumina, zirconia, chromia, yttria, silica, hafnia, and mixtures thereof. In a third embodiment, the coating includes a nitride selected from the group of silicon nitride, sialon, titanium nitride, and mixtures thereof. Other coating embodiments are described in the disclosure.
    Type: Grant
    Filed: October 15, 2003
    Date of Patent: August 18, 2009
    Assignee: United Technologies Corporation
    Inventors: James T. Beals, Joshua Persky, Dilip M. Shah, Venkat Seetharaman, Sudhangshu Bose, Jacob Snyder, Keith Santeler, Carl Verner, Stephen D. Murray, John Marcin, Dinesh Gupta, Daniel A. Bales, Daniel Francis Paulonis, Glenn Cotnoir, John Wiedemer
  • Publication number: 20090114797
    Abstract: A refractory metal core for use in a casting system has a coating for providing oxidation resistance during shell fire and protection against reaction/dissolution during casting. In a first embodiment, the coating includes at least one oxide and a silicon containing material. In a second embodiment, the coating includes an oxide selected from the group of calcia, magnesia, alumina, zirconia, chromia, yttria, silica, hafnia, and mixtures thereof. In a third embodiment, the coating includes a nitride selected from the group of silicon nitride, sialon, titanium nitride, and mixtures thereof. Other coating embodiments are described in the disclosure.
    Type: Application
    Filed: October 15, 2003
    Publication date: May 7, 2009
    Inventors: James T. Beals, Joshua Persky, Dilip M. Shah, Venkat Seetharaman, Sudhangshu Bose, Jacob Snyder, Keith Santeler, Carl Verner, Stephen D. Murray, John J. Marcin, Dinesh Gupta, Daniel A. Bales, Daniel Francis Paulonis, Glenn Cotnoir, John Wiedemer