Patents by Inventor Joshua S. Hooge

Joshua S. Hooge has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10534266
    Abstract: The disclosure herein describes methods for Photosensitized Chemically Amplified Resist Chemicals (PS-CAR) to pattern light sensitive films on a semiconductor substrate. In one embodiment, a two-step exposure process may generate higher acid concentration regions within a photoresist layer. The PS-CAR chemicals may include photoacid generators (PAGs) and photosensitizer elements that enhance the decomposition of the PAGs into acid. The first exposure may be a patterned EUV exposure that generates an initial amount of acid and photosensitizer. The second exposure may be a non-EUV flood exposure that excites the photosensitizer which increases the acid generation rate where the photosensitizer is located on the substrate. The distribution of energy during the exposures may be optimized by using certain characteristics (e.g., thickness, index of refraction, doping) of the photoresist layer, an underlying layer, and/or an overlying layer.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: January 14, 2020
    Assignee: Tokyo Electron Limited
    Inventors: Michael A. Carcasi, Joshua S. Hooge, Benjamen M. Rathsack, Seiji Nagahara
  • Patent number: 10403501
    Abstract: Techniques herein include a bladder-based dispense system using an elongate bladder configured to selectively expand and contract to assist with dispense actions. This dispense system compensates for filter-lag, which often accompanies fluid filtering for microfabrication. This dispense system also provides a high-purity and high precision dispense unit. A process fluid filter is located downstream from a process fluid source as well as a system valve. Downstream from the process fluid filter there are no valves. Dispense actions can be initiated and stop while the system valve is open by using the elongate bladder. The elongate bladder can be expanded to stop or pause a dispense action, and then be contracted to assist with a dispense action.
    Type: Grant
    Filed: August 11, 2017
    Date of Patent: September 3, 2019
    Assignee: Tokyo Electron Limited
    Inventors: Anton J. deVilliers, Rodney L. Robison, Ronald Nasman, David Travis, James Grootegoed, Norman A. Jacobson, Jr., Lior Huli, Joshua S. Hooge
  • Patent number: 10354872
    Abstract: Techniques herein include a bladder-based dispense system using an elongate bladder configured to selectively expand and contract to assist with dispense actions. This dispense system compensates for filter-lag, which often accompanies fluid filtering for microfabrication. This dispense system also provides a high-purity and high precision dispense unit. A meniscus sensor monitors a position of a meniscus of process fluid at a nozzle. The elongate bladder unit is used to maintain a position of the meniscus at a particular location by selectively expanding or contracting the bladder, thereby moving or holding a meniscus position. Expansion of the elongate bladder is also used for a suck-back action after completing a dispense action.
    Type: Grant
    Filed: August 11, 2017
    Date of Patent: July 16, 2019
    Assignee: Tokyo Electron Limited
    Inventors: Anton J. deVilliers, Rodney L. Robison, Ronald Nasman, David Travis, James Grootegoed, Norman A. Jacobson, Jr., David Hetzer, Lior Huli, Joshua S. Hooge
  • Patent number: 10262880
    Abstract: Techniques disclosed herein provide an apparatus and method of spin coating that inhibits the formation of wind marks and other defects from turbulent fluid-flow, thereby enabling higher rotational velocities and decreased drying times, while maintaining film uniformity. Techniques disclosed herein include a fluid-flow member, such as a ring or cover, positioned or suspended above the surface of a wafer or other substrate. The fluid-flow member has a radial curvature that prevents wind marks during rotation of a wafer during a coating and spin drying process.
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: April 16, 2019
    Assignee: Tokyo Electron Limited
    Inventors: Derek W. Bassett, Wallace P. Printz, Joshua S. Hooge, Katsunori Ichino, Yuichi Terashita, Kousuke Yoshihara
  • Publication number: 20180315596
    Abstract: The disclosure herein describes methods for Photosensitized Chemically Amplified Resist Chemicals (PS-CAR) to pattern light sensitive films (e.g., photoresist on anti-reflective coatings) on a semiconductor substrate. In one embodiment, a two-step exposure process may generate higher acid concentration regions within a photoresist layer. The PS-CAR chemicals may include photoacid generators (PAGs) and photosensitizer elements that enhance the decomposition of the PAGs into acid. The first exposure may be a patterned EUV or UV exposure that generates an initial amount of acid and photosensitizer. The second exposure may be a non-EUV flood exposure that excites the photosensitizer which increases the acid generation rate where the photosensitizer is located in the film stack. The distribution of energy during the exposures may be optimized by using certain characteristics (e.g., thickness, index of refraction, doping) of the photoresist layer, an underlying layer, and/or an overlying layer.
    Type: Application
    Filed: July 9, 2018
    Publication date: November 1, 2018
    Inventors: Steven Scheer, Michael A. Carcasi, Benjamen M. Rathsack, Mark H. Somervell, Joshua S. Hooge
  • Patent number: 10020195
    Abstract: The disclosure herein describes methods for Photosensitized Chemically Amplified Resist Chemicals (PS-CAR) to pattern light sensitive films (e.g., photoresist on anti-reflective coatings) on a semiconductor substrate. In one embodiment, a two-step exposure process may generate higher acid concentration regions within a photoresist layer. The PS-CAR chemicals may include photoacid generators (PAGs) and photosensitizer elements that enhance the decomposition of the PAGs into acid. The first exposure may be a patterned EUV or UV exposure that generates an initial amount of acid and photosensitizer. The second exposure may be a non-EUV flood exposure that excites the photosensitizer which increases the acid generation rate where the photosensitizer is located in the film stack. The distribution of energy during the exposures may be optimized by using certain characteristics (e.g., thickness, index of refraction, doping) of the photoresist layer, an underlying layer, and/or an overlying layer.
    Type: Grant
    Filed: February 24, 2015
    Date of Patent: July 10, 2018
    Assignee: Tokyo Electron Limited
    Inventors: Steven Scheer, Michael A. Carcasi, Benjamen M. Rathsack, Mark H. Somervell, Joshua S. Hooge
  • Publication number: 20180047563
    Abstract: Techniques herein include a bladder-based dispense system using an elongate bladder configured to selectively expand and contract to assist with dispense actions. This dispense system compensates for filter-lag, which often accompanies fluid filtering for microfabrication. This dispense system also provides a high-purity and high precision dispense unit. A meniscus sensor monitors a position of a meniscus of process fluid at a nozzle. The elongate bladder unit is used to maintain a position of the meniscus at a particular location by selectively expanding or contracting the bladder, thereby moving or holding a meniscus position. Expansion of the elongate bladder is also used for a suck-back action after completing a dispense action.
    Type: Application
    Filed: August 11, 2017
    Publication date: February 15, 2018
    Inventors: Anton J. deVilliers, Rodney L. Robison, Ronald Nasman, David Travis, James Grootegoed, Norman A. Jacobson, JR., David Hetzer, Lior Huli, Joshua S. Hooge
  • Publication number: 20180047562
    Abstract: Techniques herein include a bladder-based dispense system using an elongate bladder configured to selectively expand and contract to assist with dispense actions. This dispense system compensates for filter-lag, which often accompanies fluid filtering for microfabrication. This dispense system also provides a high-purity and high precision dispense unit. A process fluid filter is located downstream from a process fluid source as well as a system valve. Downstream from the process fluid filter there are no valves. Dispense actions can be initiated and stop while the system valve is open by using the elongate bladder. The elongate bladder can be expanded to stop or pause a dispense action, and then be contracted to assist with a dispense action.
    Type: Application
    Filed: August 11, 2017
    Publication date: February 15, 2018
    Inventors: Anton J. deVilliers, Rodney L. Robison, Ronald Nasman, David Travis, James Grootegoed, Norman A. Jacobson, JR., Lior Huli, Joshua S. Hooge
  • Patent number: 9711419
    Abstract: Embodiments described relate to a method and apparatus for reducing lithographic distortion. A backside of a semiconductor substrate may be texturized. Then a lithographic process may be performed on the semiconductor substrate having the texturized backside.
    Type: Grant
    Filed: August 22, 2015
    Date of Patent: July 18, 2017
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Carlos A. Fonseca, Benjamen M. Rathsack, Jeffrey Smith, Anton J. deVilliers, Lior Huli, Teruhiko Kodama, Joshua S. Hooge
  • Publication number: 20170192357
    Abstract: The disclosure herein describes methods for Photosensitized Chemically Amplified Resist Chemicals (PS-CAR) to pattern light sensitive films on a semiconductor substrate. In one embodiment, a two-step exposure process may generate higher acid concentration regions within a photoresist layer. The PS-CAR chemicals may include photoacid generators (PAGs) and photosensitizer elements that enhance the decomposition of the PAGs into acid. The first exposure may be a patterned EUV exposure that generates an initial amount of acid and photosensitizer. The second exposure may be a non-EUV flood exposure that excites the photosensitizer which increases the acid generation rate where the photosensitizer is located on the substrate. The distribution of energy during the exposures may be optimized by using certain characteristics (e.g., thickness, index of refraction, doping) of the photoresist layer, an underlying layer, and/or an overlying layer.
    Type: Application
    Filed: February 28, 2017
    Publication date: July 6, 2017
    Inventors: Michael A. Carcasi, Joshua S. Hooge, Benjamen M. Rathsack, Seiji Nagahara
  • Patent number: 9618848
    Abstract: The disclosure herein describes methods for Photosensitized Chemically Amplified Resist Chemicals (PS-CAR) to pattern light sensitive films on a semiconductor substrate. In one embodiment, a two-step exposure process may generate higher acid concentration regions within a photoresist layer. The PS-CAR chemicals may include photoacid generators (PAGs) and photosensitizer elements that enhance the decomposition of the PAGs into acid. The first exposure may be a patterned EUV exposure that generates an initial amount of acid and photosensitizer. The second exposure may be a non-EUV flood exposure that excites the photosensitizer which increases the acid generation rate where the photosensitizer is located on the substrate. The distribution of energy during the exposures may be optimized by using certain characteristics (e.g., thickness, index of refraction, doping) of the photoresist layer, an underlying layer, and/or an overlying layer.
    Type: Grant
    Filed: February 24, 2015
    Date of Patent: April 11, 2017
    Assignee: Tokyo Electron Limited
    Inventors: Michael A. Carcasi, Joshua S. Hooge, Benjamen M. Rathsack, Seiji Nagahara
  • Publication number: 20160363868
    Abstract: Disclosed is a method and apparatus for mitigation of photoresist line pattern collapse in a photolithography process by applying a gap-fill material treatment after the post-development line pattern rinse step. The gap-fill material dries into a solid layer filling the inter-line spaces of the line pattern, thereby preventing line pattern collapse due to capillary forces during the post-rinse line pattern drying step. Once dried, the gap-fill material is depolymerized, volatilized, and removed from the line pattern by heating, illumination with ultraviolet light, by application of a catalyst chemistry, or by plasma etching.
    Type: Application
    Filed: July 29, 2016
    Publication date: December 15, 2016
    Inventors: Mark H. SOMERVELL, Benjamen M. RATHSACK, Ian J. BROWN, Steven SCHEER, Joshua S. HOOGE
  • Patent number: 9519227
    Abstract: Methods for measuring photosensitizer concentrations in a photo-sensitized chemically-amplified resist (PS-CAR) patterning process are described. Measured photosensitizer concentrations can be used in feedback and feedforward control of the patterning process and subsequent processing steps. Also described is a metrology target formed using PS-CAR resist, and a substrate including a plurality of such metrology targets to facilitate patterning process control.
    Type: Grant
    Filed: February 23, 2015
    Date of Patent: December 13, 2016
    Assignee: Tokyo Electron Limited
    Inventors: Michael A. Carcasi, Mark H. Somervell, Joshua S. Hooge, Benjamen M. Rathsack, Seiji Nagahara
  • Publication number: 20160358786
    Abstract: Systems and methods for SOC planarization are described. In an embodiment, an apparatus for SOC planarization includes a substrate holder configured to support a microelectronic substrate. Additionally, the apparatus may include a light source configured to emit ultraviolet (UV) light toward a surface of the microelectronic substrate. In an embodiment, the apparatus may also include an isolation window disposed between the light source and the microelectronic substrate. Also, the apparatus may include a gas distribution unit configured to inject gas in a region between the isolation window and the microelectronic substrate. Furthermore, the apparatus may include an etchback leveling component configured to reduce non-uniformity of a UV light treatment of the microelectronic substrate.
    Type: Application
    Filed: June 2, 2016
    Publication date: December 8, 2016
    Inventors: Joshua S. Hooge, Benjamen M. Rathsack, Michael A. Carcasi, Mark H. Somervell, Ian J. Brown, Wallace P. Printz
  • Patent number: 9454081
    Abstract: Disclosed is a method and apparatus for mitigation of photoresist line pattern collapse in a photolithography process by applying a gap-fill material treatment after the post-development line pattern rinse step. The gap-fill material dries into a solid layer filling the inter-line spaces of the line pattern, thereby preventing line pattern collapse due to capillary forces during the post-rinse line pattern drying step. Once dried, the gap-fill material is depolymerized, volatilized, and removed from the line pattern by heating, illumination with ultraviolet light, by application of a catalyst chemistry, or by plasma etching.
    Type: Grant
    Filed: July 3, 2014
    Date of Patent: September 27, 2016
    Assignee: Tokyo Electron Limited
    Inventors: Mark H Somervell, Benjamen M Rathsack, Ian J Brown, Steven Scheer, Joshua S Hooge
  • Publication number: 20160043007
    Abstract: Embodiments described relate to a method and apparatus for reducing lithographic distortion. A backside of a semiconductor substrate may be texturized. Then a lithographic process may be performed on the semiconductor substrate having the texturized backside.
    Type: Application
    Filed: August 22, 2015
    Publication date: February 11, 2016
    Inventors: Carlos A. Fonseca, Benjamen M. Rathsack, Jeffrey Smith, Anton J. deVilliers, Lior Huli, Teruhiko Kodama, Joshua S. Hooge
  • Publication number: 20150241782
    Abstract: The disclosure herein describes methods for Photosensitized Chemically Amplified Resist Chemicals (PS-CAR) to pattern light sensitive films (e.g., photoresist on anti-reflective coatings) on a semiconductor substrate. In one embodiment, a two-step exposure process may generate higher acid concentration regions within a photoresist layer. The PS-CAR chemicals may include photoacid generators (PAGs) and photosensitizer elements that enhance the decomposition of the PAGs into acid. The first exposure may be a patterned EUV or UV exposure that generates an initial amount of acid and photosensitizer. The second exposure may be a non-EUV flood exposure that excites the photosensitizer which increases the acid generation rate where the photosensitizer is located in the film stack. The distribution of energy during the exposures may be optimized by using certain characteristics (e.g., thickness, index of refraction, doping) of the photoresist layer, an underlying layer, and/or an overlying layer.
    Type: Application
    Filed: February 24, 2015
    Publication date: August 27, 2015
    Inventors: Steven SCHEER, Michael A. CARCASI, Benjamen M. RATHSACK, Mark H. SOMERVELL, Joshua S. HOOGE
  • Publication number: 20150241783
    Abstract: The disclosure herein describes methods for Photosensitized Chemically Amplified Resist Chemicals (PS-CAR) to pattern light sensitive films on a semiconductor substrate. In one embodiment, a two-step exposure process may generate higher acid concentration regions within a photoresist layer. The PS-CAR chemicals may include photoacid generators (PAGs) and photosensitizer elements that enhance the decomposition of the PAGs into acid. The first exposure may be a patterned EUV exposure that generates an initial amount of acid and photosensitizer. The second exposure may be a non-EUV flood exposure that excites the photosensitizer which increases the acid generation rate where the photosensitizer is located on the substrate. The distribution of energy during the exposures may be optimized by using certain characteristics (e.g., thickness, index of refraction, doping) of the photoresist layer, an underlying layer, and/or an overlying layer.
    Type: Application
    Filed: February 24, 2015
    Publication date: August 27, 2015
    Inventors: Michael A. CARCASI, Joshua S. HOOGE, Benjamen M. RATHSACK, Seiji NAGAHARA
  • Publication number: 20150241793
    Abstract: Methods for measuring photosensitizer concentrations in a photo-sensitized chemically-amplified resist (PS-CAR) patterning process are described. Measured photosensitizer concentrations can be used in feedback and feedforward control of the patterning process and subsequent processing steps. Also described is a metrology target formed using PS-CAR resist, and a substrate including a plurality of such metrology targets to facilitate patterning process control.
    Type: Application
    Filed: February 23, 2015
    Publication date: August 27, 2015
    Inventors: Michael A. CARCASI, Mark H. SOMERVELL, Joshua S. HOOGE, Benjamen M. RATHSACK, Seiji NAGAHARA
  • Publication number: 20150125791
    Abstract: Disclosed is a method and apparatus for mitigation of photoresist line pattern collapse in a photolithography process by applying a gap-fill material treatment after the post-development line pattern rinse step. The gap-fill material dries into a solid layer filling the inter-line spaces of the line pattern, thereby preventing line pattern collapse due to capillary forces during the post-rinse line pattern drying step. Once dried, the gap-fill material is depolymerized, volatilized, and removed from the line pattern by heating, illumination with ultraviolet light, by application of a catalyst chemistry, or by plasma etching.
    Type: Application
    Filed: July 3, 2014
    Publication date: May 7, 2015
    Inventors: Mark H. SOMERVELL, Benjamen M. RATHSACK, Ian J. BROWN, Steven SCHEER, Joshua S. HOOGE