Patents by Inventor Joshua Seth Herbach

Joshua Seth Herbach has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200019166
    Abstract: Example systems and methods enable an autonomous vehicle to request assistance from a remote operator when the vehicle's confidence in operation is low. One example method includes operating an autonomous vehicle in a first autonomous mode. The method may also include identifying a situation where a level of confidence of an autonomous operation in the first autonomous mode is below a threshold level. The method may further include sending a request for assistance to a remote assistor, the request including sensor data representative of a portion of an environment of the autonomous vehicle. The method may additionally include receiving a response from the remote assistor, the response indicating a second autonomous mode of operation. The method may also include causing the autonomous vehicle to operate in the second autonomous mode of operation in accordance with the response from the remote assistor.
    Type: Application
    Filed: September 5, 2019
    Publication date: January 16, 2020
    Inventors: Nathaniel Fairfield, Joshua Seth Herbach
  • Patent number: 10520941
    Abstract: Aspects of the disclosure relate to controlling a vehicle in an autonomous driving mode. For instance, a first location corresponding to a location where the vehicle is to pick up or drop off a passenger is received. A first cost for the vehicle to reach the first location is determined. A second location based on the first location is identified, and a second cost is determined based on a cost for the vehicle to reach the second location and a cost for the passenger to reach the second location. The first cost is compared to the second cost, and a notification is sent based on the notification. In response to sending the notification, instructions to proceed to the second location are received, and in response to receiving the instructions, the vehicle is controlled in the autonomous driving mode to the second location to pick up or drop off the passenger.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: December 31, 2019
    Assignee: Waymo LLC
    Inventors: Joshua Seth Herbach, Michael Epstein, Mishika Vora, Guillaume Dupre, Kevin Rawlings
  • Patent number: 10475345
    Abstract: Aspects of the present disclosure relate to a system having a memory, a plurality of self-driving systems for controlling a vehicle, and one or more processors. The processors are configured to receive at least one fallback task in association with a request for a primary task and at least one trigger of each fallback task. Each trigger is a set of conditions that, when satisfied, indicate when a vehicle requires attention for proper operation. The processors are also configured to send instructions to the self-driving systems to execute the primary task and receive status updates from the self-driving systems. The processors are configured to determine that a set of conditions of a trigger is satisfied based on the status updates and send further instructions based on the associated fallback task to the self-driving systems.
    Type: Grant
    Filed: May 12, 2016
    Date of Patent: November 12, 2019
    Assignee: Waymo LLC
    Inventors: Joshua Seth Herbach, Philip Nemec, Nathaniel Fairfield
  • Patent number: 10444754
    Abstract: Example systems and methods enable an autonomous vehicle to request assistance from a remote operator when the vehicle's confidence in operation is low. One example method includes operating an autonomous vehicle in a first autonomous mode. The method may also include identifying a situation where a level of confidence of an autonomous operation in the first autonomous mode is below a threshold level. The method may further include sending a request for assistance to a remote assistor, the request including sensor data representative of a portion of an environment of the autonomous vehicle. The method may additionally include receiving a response from the remote assistor, the response indicating a second autonomous mode of operation. The method may also include causing the autonomous vehicle to operate in the second autonomous mode of operation in accordance with the response from the remote assistor.
    Type: Grant
    Filed: September 6, 2016
    Date of Patent: October 15, 2019
    Assignee: Waymo LLC
    Inventors: Nathaniel Fairfield, Joshua Seth Herbach
  • Patent number: 10440536
    Abstract: The technology relates to actively looking for an assigned passenger prior to a vehicle reaching a pickup location. For instance, information identifying the pickup location and client device information for authenticating the assigned passenger is received. Sensor data is received from a perception system of the vehicle identifying objects in an environment of the vehicle. When the vehicle is within a predetermined distance of the pickup location, authenticating a client device using the client device information is attempted. When the client device has been authenticated, the sensor data is used to determine whether a pedestrian is within a first threshold distance of the vehicle. When a pedestrian is determined to be within the first threshold distance of the vehicle, the vehicle is stopped prior to reaching the pickup location, to wait for the pedestrian within the first threshold distance of the vehicle to enter the vehicle.
    Type: Grant
    Filed: December 26, 2017
    Date of Patent: October 8, 2019
    Assignee: Waymo LLC
    Inventors: Philip Nemec, Renaud-Roland Hubert, Joshua Seth Herbach, Min Li Chan, Michael Epstein, Salil Pandit, John Wesley Dyer, Juliet Rothenberg
  • Publication number: 20190287409
    Abstract: Aspects of the present disclosure relate to a system having a memory, a plurality of self-driving systems for controlling a vehicle, and one or more processors. The processors are configured to receive at least one fallback task in association with a request for a primary task and at least one trigger of each fallback task. Each trigger is a set of conditions that, when satisfied, indicate when a vehicle requires attention for proper operation. The processors are also configured to send instructions to the self-driving systems to execute the primary task and receive status updates from the self-driving systems. The processors are configured to determine that a set of conditions of a trigger is satisfied based on the status updates and send further instructions based on the associated fallback task to the self-driving systems.
    Type: Application
    Filed: May 15, 2019
    Publication date: September 19, 2019
    Inventors: Joshua Seth Herbach, Philip Nemec, Nathaniel Fairfield
  • Publication number: 20190186936
    Abstract: A route is selected for travel by an autonomous vehicle based on at least a level of difficulty of traversing the driving environment along that route. Vehicle signals, provided by one or more autonomous vehicles, indicating a difficulty associated with traveling a portion of a route are collected and used to predict a most favorable driving route for a given time. The signals may indicate a probability of disengaging from autonomous driving mode, a probability of being stuck for an unduly long time, traffic density, etc. A difficulty score may be computed for each road segment of a route, and then the scores of all of the road segments of the route are added together. The scores are based on number of previous disengagements, previous requests for remote assistance, unprotected left or right turns, whether parts of the driving area are occluded, etc. The difficulty score is used to compute a cost for a particular route, which may be compared to costs computed for other possible routes.
    Type: Application
    Filed: December 15, 2017
    Publication date: June 20, 2019
    Inventors: Dietmar Ebner, Joshua Seth Herbach, Michael Steven Montemerlo
  • Publication number: 20190187702
    Abstract: Aspects of the disclosure relate to controlling a vehicle in an autonomous driving mode. For instance, a first location corresponding to a location where the vehicle is to pick up or drop off a passenger is received. A first cost for the vehicle to reach the first location is determined. A second location based on the first location is identified, and a second cost is determined based on a cost for the vehicle to reach the second location and a cost for the passenger to reach the second location. The first cost is compared to the second cost, and a notification is sent based on the notification. In response to sending the notification, instructions to proceed to the second location are received, and in response to receiving the instructions, the vehicle is controlled in the autonomous driving mode to the second location to pick up or drop off the passenger.
    Type: Application
    Filed: December 15, 2017
    Publication date: June 20, 2019
    Inventors: Joshua Seth Herbach, Michael Epstein, Mishika Vora, Guillaume Dupre, Kevin Rawlings
  • Publication number: 20190179336
    Abstract: Aspects of the disclosure relate to assigning a fleet of driverless vehicles to a plurality of parking locations for parking vehicles of the fleet. For instance, locations of the vehicles of the fleet as well as a number of available spaces at each of the plurality of parking location locations may be tracked. A subset of the fleet not already located at one of the plurality of parking locations is identified. At least one assignment assigning each vehicle of the subset to a respective parking location of the plurality of parking locations is determined according to the numbers of available spaces and the identified locations of the subset. For the at least one assignment, a total cost is determined by determining a cost value for each of a plurality of factors. The given assignment is sent to the fleet based on the total cost and the cost value.
    Type: Application
    Filed: December 12, 2017
    Publication date: June 13, 2019
    Inventors: Peter Colijn, Laurens Andreas Feenstra, Joshua Seth Herbach, Katharine Patterson
  • Publication number: 20190171202
    Abstract: Example systems and methods enable an autonomous vehicle to request assistance from a remote operator in certain predetermined situations. One example method includes determining a representation of an environment of an autonomous vehicle based on sensor data of the environment. Based on the representation, the method may also include identifying a situation from a predetermined set of situations for which the autonomous vehicle will request remote assistance. The method may further include sending a request for assistance to a remote assistor, the request including the representation of the environment and the identified situation. The method may additionally include receiving a response from the remote assistor indicating an autonomous operation. The method may also include causing the autonomous vehicle to perform the autonomous operation.
    Type: Application
    Filed: February 7, 2019
    Publication date: June 6, 2019
    Inventors: Nathaniel Fairfield, Joshua Seth Herbach, Vadim Furman
  • Publication number: 20190170520
    Abstract: Aspects of the disclosure provide systems and methods for providing suggested locations for pick up and destination locations. Pick up locations may include locations where an autonomous vehicle can pick up a passenger, while destination locations may include locations where the vehicle can wait for an additional passenger, stop and wait for a passenger to perform some task and return to the vehicle, or for the vehicle to drop off a passenger. As such, a request for a vehicle may be received from a client computing device. The request may identify a first location. A set of one or more suggested locations may be selected by comparing the predetermined locations to the first location. The set may be provided to the client computing device.
    Type: Application
    Filed: November 20, 2018
    Publication date: June 6, 2019
    Inventors: Peter Colijn, Joshua Seth Herbach, Matthew Paul McNaughton
  • Publication number: 20190155283
    Abstract: Aspects of the disclosure relate to maneuvering a vehicle in an autonomous driving mode. For instance, that the vehicle needs to pullover may be determined based on a first input. A severity level corresponding to the first input may be determined. A set of requirements may be determined based on the severity level. A search may be performed over a map to identify a location for the vehicle to pull over that meets the set of requirements. The vehicle may then be maneuvered to pull over at the location.
    Type: Application
    Filed: November 17, 2017
    Publication date: May 23, 2019
    Inventors: Joshua Seth Herbach, Guillaume Dupre
  • Patent number: 10261512
    Abstract: Aspects of the present disclosure relate to a vehicle having one or more computing devices that may receive instructions to pick up a passenger at a pickup location and determine when the vehicle is within a first distance of the pickup location. When the vehicle is within the first distance, the computing devices may make a first attempt to find a spot to park the vehicle and wait for the passenger. When the vehicle is unable to find a spot to park the vehicle on the first attempt, the computing devices may maneuvering the vehicle in order to make a second attempt to find a spot to park the vehicle and wait for the passenger. When the vehicle is unable to find a spot to park the vehicle on the second attempt, the computing devices may stop the vehicle in a current lane to wait for the passenger.
    Type: Grant
    Filed: September 28, 2016
    Date of Patent: April 16, 2019
    Assignee: Waymo LLC
    Inventors: Brian Douglas Cullinane, David Tse-Zhou Lu, Anne Kristiina Aula, Jennifer Arden, Nathaniel Fairfield, Joshua Seth Herbach, Calvin Karl Johnson, Renaud-Roland Hubert
  • Patent number: 10241508
    Abstract: Example systems and methods enable an autonomous vehicle to request assistance from a remote operator in certain predetermined situations. One example method includes determining a representation of an environment of an autonomous vehicle based on sensor data of the environment. Based on the representation, the method may also include identifying a situation from a predetermined set of situations for which the autonomous vehicle will request remote assistance. The method may further include sending a request for assistance to a remote assistor, the request including the representation of the environment and the identified situation. The method may additionally include receiving a response from the remote assistor indicating an autonomous operation. The method may also include causing the autonomous vehicle to perform the autonomous operation.
    Type: Grant
    Filed: June 9, 2017
    Date of Patent: March 26, 2019
    Assignee: Waymo LLC
    Inventors: Nathaniel Fairfield, Joshua Seth Herbach, Vadim Furman
  • Publication number: 20190064808
    Abstract: Aspects of the present disclosure relate to context aware stopping of a vehicle without a driver. As an example, after a passenger has entered the vehicle, the vehicle is maneuvered by one or more processors in an autonomous driving mode towards a destination location along a route. The route is divided into two or more stages. A signal is received by the one or more processors. The signal indicates that the passenger is requesting that the vehicle stop or pull over. In response to the signal, the one or more processors determine a current stage of the route based on a current distance of the vehicle from a pickup location where the passenger entered the vehicle or a current distance of the vehicle from the destination location. The one or more processors then stop the vehicle in accordance with the determined current stage.
    Type: Application
    Filed: August 22, 2017
    Publication date: February 28, 2019
    Inventors: John Wesley Dyer, Luis Torres, Michael Epstein, Guillaume Dupre, Joshua Seth Herbach
  • Publication number: 20190004527
    Abstract: A route for a trip to a destination is generated using map information. A set of no-go roadway segments, where the vehicle is not able to drive in an autonomous mode, relevant to the route from the plurality of no-go roadway segments is identified from the map information. A local region around a current location of the vehicle is determined. A local map region including roadway segments of the map information that correspond to locations within the local region is determined. The set of the plurality of no-go roadway segments is filtered from the roadway segments of the local map region. A cost value is assigned to each roadway segment of the filtered roadway segments of the local map region. Any assigned cost values are used to determining a plan for maneuvering the vehicle for a predetermined period into the future. The vehicle is maneuvered according to the plan.
    Type: Application
    Filed: July 9, 2018
    Publication date: January 3, 2019
    Inventors: Nathaniel Fairfield, Joshua Seth Herbach
  • Patent number: 10156449
    Abstract: Aspects of the disclosure provide systems and methods for providing suggested locations for pick up and destination locations. Pick up locations may include locations where an autonomous vehicle can pick up a passenger, while destination locations may include locations where the vehicle can wait for an additional passenger, stop and wait for a passenger to perform some task and return to the vehicle, or for the vehicle to drop off a passenger. As such, a request for a vehicle may be received from a client computing device. The request may identify a first location. A set of one or more suggested locations may be selected by comparing the predetermined locations to the first location. The set may be provided to the client computing device.
    Type: Grant
    Filed: July 10, 2017
    Date of Patent: December 18, 2018
    Assignee: Waymo LLC
    Inventors: Peter Colijn, Joshua Seth Herbach, Matthew Paul McNaughton
  • Publication number: 20180338229
    Abstract: The technology relates to actively looking for an assigned passenger prior to a vehicle reaching a pickup location. For instance, information identifying the pickup location and client device information for authenticating the assigned passenger is received. Sensor data is received from a perception system of the vehicle identifying objects in an environment of the vehicle. When the vehicle is within a predetermined distance of the pickup location, authenticating a client device using the client device information is attempted. When the client device has been authenticated, the sensor data is used to determine whether a pedestrian is within a first threshold distance of the vehicle. When a pedestrian is determined to be within the first threshold distance of the vehicle, the vehicle is stopped prior to reaching the pickup location, to wait for the pedestrian within the first threshold distance of the vehicle to enter the vehicle.
    Type: Application
    Filed: December 26, 2017
    Publication date: November 22, 2018
    Inventors: Philip Nemec, Renaud-Roland Hubert, Joshua Seth Herbach, Min Li Chan, Michael Epstein, Salil Pandit, John Wesley Dyer, Juliet Rothenberg
  • Patent number: 10042362
    Abstract: A route for a trip to a destination is generated using map information. A set of no-go roadway segments, where the vehicle is not able to drive in an autonomous mode, relevant to the route from the plurality of no-go roadway segments is identified from the map information. A local region around a current location of the vehicle is determined. A local map region including roadway segments of the map information that correspond to locations within the local region is determined. The set of the plurality of no-go roadway segments is filtered from the roadway segments of the local map region. A cost value is assigned to each roadway segment of the filtered roadway segments of the local map region. Any assigned cost values are used to determining a plan for maneuvering the vehicle for a predetermined period into the future. The vehicle is maneuvered according to the plan.
    Type: Grant
    Filed: November 18, 2016
    Date of Patent: August 7, 2018
    Assignee: Waymo LLC
    Inventors: Nathaniel Fairfield, Joshua Seth Herbach
  • Publication number: 20180204458
    Abstract: Example systems and methods allow for reporting and sharing of information reports relating to driving conditions within a fleet of autonomous vehicles. One example method includes receiving information reports relating to driving conditions from a plurality of autonomous vehicles within a fleet of autonomous vehicles. The method may also include receiving sensor data from a plurality of autonomous vehicles within the fleet of autonomous vehicles. The method may further include validating some of the information reports based at least in part on the sensor data. The method may additionally include combining validated information reports into a driving information map. The method may also include periodically filtering the driving information map to remove outdated information reports. The method may further include providing portions of the driving information map to autonomous vehicles within the fleet of autonomous vehicles.
    Type: Application
    Filed: March 13, 2018
    Publication date: July 19, 2018
    Inventors: Nathaniel Fairfield, Joshua Seth Herbach, Andrew Hughes Chatham, Michael Steven Montemerlo