Patents by Inventor Joshua Sweetkind-Singer

Joshua Sweetkind-Singer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240002938
    Abstract: Disclosed herein is a system and method for increasing the fidelity of measured genetic data, for making allele calls, and for determining the state of aneuploidy, in one or a small set of cells, or from fragmentary DNA, where a limited quantity of genetic data is available. Poorly or incorrectly measured base pairs, missing alleles and missing regions are reconstructed using expected similarities between the target genome and the genome of genetically related individuals. In accordance with one embodiment, incomplete genetic data from an embryonic cell are reconstructed at a plurality of loci using the more complete genetic data from a larger sample of diploid cells from one or both parents, with or without haploid genetic data from one or both parents. In another embodiment, the chromosome copy number can be determined from the measured genetic data, with or without genetic information from one or both parents.
    Type: Application
    Filed: September 7, 2023
    Publication date: January 4, 2024
    Applicant: Natera, Inc.
    Inventors: Matthew RABINOWITZ, Milena BANJEVIC, Zachary DEMKO, David JOHNSON, Dusan KIJACIC, Dimitri PETROV, Joshua SWEETKIND-SINGER, Jing XU
  • Publication number: 20230212693
    Abstract: Disclosed herein is a system and method for increasing the fidelity of measured genetic data, for making allele calls, and for determining the state of aneuploidy, in one or a small set of cells, or from fragmentary DNA, where a limited quantity of genetic data is available. Poorly or incorrectly measured base pairs, missing alleles and missing regions are reconstructed using expected similarities between the target genome and the genome of genetically related individuals. In accordance with one embodiment, incomplete genetic data from an embryonic cell are reconstructed at a plurality of loci using the more complete genetic data from a larger sample of diploid cells from one or both parents, with or without haploid genetic data from one or both parents. In another embodiment, the chromosome copy number can be determined from the measured genetic data, with or without genetic information from one or both parents.
    Type: Application
    Filed: March 13, 2023
    Publication date: July 6, 2023
    Applicant: Natera, Inc.
    Inventors: Matthew RABINOWITZ, Milena BANJEVIC, Zachary DEMKO, David JOHNSON, Dusan KIJACIC, Dimitri PETROV, Joshua SWEETKIND-SINGER, Jing XU
  • Publication number: 20230193387
    Abstract: Disclosed herein is a system and method for increasing the fidelity of measured genetic data, for making allele calls, and for determining the state of aneuploidy, in one or a small set of cells, or from fragmentary DNA, where a limited quantity of genetic data is available. Poorly or incorrectly measured base pairs, missing alleles and missing regions are reconstructed using expected similarities between the target genome and the genome of genetically related individuals. In accordance with one embodiment, incomplete genetic data from an embryonic cell are reconstructed at a plurality of loci using the more complete genetic data from a larger sample of diploid cells from one or both parents, with or without haploid genetic data from one or both parents. In another embodiment, the chromosome copy number can be determined from the measured genetic data, with or without genetic information from one or both parents.
    Type: Application
    Filed: June 9, 2022
    Publication date: June 22, 2023
    Applicant: Natera, Inc.
    Inventors: Matthew RABINOWITZ, Milena BANJEVIC, Zachary DEMKO, David JOHNSON, Dusan KIJACIC, Dimitri PETROV, Joshua SWEETKIND-SINGER, Jing XU
  • Patent number: 11580420
    Abstract: Methods, systems, and non-transitory computer readable storage media are disclosed for analyzing feature impact of a machine-learning model using prototypes across analytical spaces. For example, the disclosed system can identify features of data points used to generate outputs via a machine-learning model and then map the features to a feature space and the outputs to a label space. The disclosed system can then utilize an iterative process to determine prototypes from the data points based on distances between the data points in the feature space and the label space. Furthermore, the disclosed system can then use the prototypes to determine the impact of the features within the machine-learning model based on locally sensitive directions; region variability; or mean, range, and variance of features of the prototypes.
    Type: Grant
    Filed: January 22, 2019
    Date of Patent: February 14, 2023
    Assignee: Adobe Inc.
    Inventors: Deepak Pai, Joshua Sweetkind-Singer, Debraj Basu
  • Patent number: 11449712
    Abstract: In various embodiments of the present disclosure, output data generated by a deployed machine learning model may be received. An input data anomaly may be detected based at least in part on analyzing input data of the deployed machine learning model. An output data anomaly may further be detected based at least in part on analyzing the output data of the deployed machine learning model. A determination may be made that the input data anomaly contributed to the output data anomaly based at least in part on comparing the input data anomaly to the output data anomaly. A report may be generated that is indicative of the input data anomaly and the output data anomaly, and the report may be transmitted to a client device.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: September 20, 2022
    Assignee: Adobe Inc.
    Inventors: Deepak Pai, Vijay Srivastava, Joshua Sweetkind-Singer, Shankar Venkitachalam
  • Publication number: 20220195526
    Abstract: Disclosed herein is a system and method for increasing the fidelity of measured genetic data, for making allele calls, and for determining the state of aneuploidy, in one or a small set of cells, or from fragmentary DNA, where a limited quantity of genetic data is available. Poorly or incorrectly measured base pairs, missing alleles and missing regions are reconstructed using expected similarities between the target genome and the genome of genetically related individuals. In accordance with one embodiment, incomplete genetic data from an embryonic cell are reconstructed at a plurality of loci using the more complete genetic data from a larger sample of diploid cells from one or both parents, with or without haploid genetic data from one or both parents. In another embodiment, the chromosome copy number can be determined from the measured genetic data, with or without genetic information from one or both parents.
    Type: Application
    Filed: March 3, 2022
    Publication date: June 23, 2022
    Applicant: Natera, Inc.
    Inventors: Matthew RABINOWITZ, Milena BANJEVIC, Zachary DEMKO, David JOHNSON, Dusan KIJACIC, Dimitri PETROV, Joshua SWEETKIND-SINGER, Jing XU
  • Publication number: 20220033908
    Abstract: Disclosed herein is a system and method for increasing the fidelity of measured genetic data, for making allele calls, and for determining the state of aneuploidy, in one or a small set of cells, or from fragmentary DNA, where a limited quantity of genetic data is available. Poorly or incorrectly measured base pairs, missing alleles and missing regions are reconstructed using expected similarities between the target genome and the genome of genetically related individuals. In accordance with one embodiment, incomplete genetic data from an embryonic cell are reconstructed at a plurality of loci using the more complete genetic data from a larger sample of diploid cells from one or both parents, with or without haploid genetic data from one or both parents. In another embodiment, the chromosome copy number can be determined from the measured genetic data, with or without genetic information from one or both parents.
    Type: Application
    Filed: October 15, 2021
    Publication date: February 3, 2022
    Applicant: Natera, Inc.
    Inventors: Matthew RABINOWITZ, Milena BANJEVIC, Zachary DEMKO, David JOHNSON, Dusan KIJACIC, Dimitri PETROV, Joshua SWEETKIND-SINGER, Jing XU
  • Patent number: 11111543
    Abstract: Disclosed herein is a system and method for increasing the fidelity of measured genetic data, for making allele calls, and for determining the state of aneuploidy, in one or a small set of cells, or from fragmentary DNA, where a limited quantity of genetic data is available. Poorly or incorrectly measured base pairs, missing alleles and missing regions are reconstructed using expected similarities between the target genome and the genome of genetically related individuals. In accordance with one embodiment, incomplete genetic data from an embryonic cell are reconstructed at a plurality of loci using the more complete genetic data from a larger sample of diploid cells from one or both parents, with or without haploid genetic data from one or both parents. In another embodiment, the chromosome copy number can be determined from the measured genetic data, with or without genetic information from one or both parents.
    Type: Grant
    Filed: February 27, 2020
    Date of Patent: September 7, 2021
    Assignee: Natera, Inc.
    Inventors: Matthew Rabinowitz, Milena Banjevic, Zachary Demko, David Johnson, Dusan Kijacic, Dimitri Petrov, Joshua Sweetkind-Singer, Jing Xu
  • Patent number: 11111544
    Abstract: Disclosed herein is a system and method for increasing the fidelity of measured genetic data, for making allele calls, and for determining the state of aneuploidy, in one or a small set of cells, or from fragmentary DNA, where a limited quantity of genetic data is available. Poorly or incorrectly measured base pairs, missing alleles and missing regions are reconstructed using expected similarities between the target genome and the genome of genetically related individuals. In accordance with one embodiment, incomplete genetic data from an embryonic cell are reconstructed at a plurality of loci using the more complete genetic data from a larger sample of diploid cells from one or both parents, with or without haploid genetic data from one or both parents. In another embodiment, the chromosome copy number can be determined from the measured genetic data, with or without genetic information from one or both parents.
    Type: Grant
    Filed: March 18, 2020
    Date of Patent: September 7, 2021
    Assignee: Natera, Inc.
    Inventors: Matthew Rabinowitz, Milena Banjevic, Zachary Demko, David Johnson, Dusan Kijacic, Dimitri Petrov, Joshua Sweetkind-Singer, Jing Xu
  • Publication number: 20210155988
    Abstract: Disclosed herein is a system and method for increasing the fidelity of measured genetic data, for making allele calls, and for determining the state of aneuploidy, in one or a small set of cells, or from fragmentary DNA, where a limited quantity of genetic data is available. Poorly or incorrectly measured base pairs, missing alleles and missing regions are reconstructed using expected similarities between the target genome and the genome of genetically related individuals. In accordance with one embodiment, incomplete genetic data from an embryonic cell are reconstructed at a plurality of loci using the more complete genetic data from a larger sample of diploid cells from one or both parents, with or without haploid genetic data from one or both parents. In another embodiment, the chromosome copy number can be determined from the measured genetic data, with or without genetic information from one or both parents.
    Type: Application
    Filed: February 1, 2021
    Publication date: May 27, 2021
    Applicant: Natera, Inc.
    Inventors: Matthew RABINOWITZ, Milena BANJEVIC, Zachary DEMKO, David JOHNSON, Dusan KIJACIC, Dimitri PETROV, Joshua SWEETKIND-SINGER, Jing XU
  • Publication number: 20210054459
    Abstract: Disclosed herein is a system and method for increasing the fidelity of measured genetic data, for making allele calls, and for determining the state of aneuploidy, in one or a small set of cells, or from fragmentary DNA, where a limited quantity of genetic data is available. Poorly or incorrectly measured base pairs, missing alleles and missing regions are reconstructed using expected similarities between the target genome and the genome of genetically related individuals. In accordance with one embodiment, incomplete genetic data from an embryonic cell are reconstructed at a plurality of loci using the more complete genetic data from a larger sample of diploid cells from one or both parents, with or without haploid genetic data from one or both parents. In another embodiment, the chromosome copy number can be determined from the measured genetic data, with or without genetic information from one or both parents.
    Type: Application
    Filed: July 1, 2020
    Publication date: February 25, 2021
    Applicant: Natera, Inc.
    Inventors: Matthew RABINOWITZ, Milena BANJEVIC, Zachary DEMKO, David JOHNSON, Dusan KIJACIC, Dimitri PETROV, Joshua SWEETKIND-SINGER, Jing XU
  • Publication number: 20200248264
    Abstract: Disclosed herein is a system and method for increasing the fidelity of measured genetic data, for making allele calls, and for determining the state of aneuploidy, in one or a small set of cells, or from fragmentary DNA, where a limited quantity of genetic data is available. Poorly or incorrectly measured base pairs, missing alleles and missing regions are reconstructed using expected similarities between the target genome and the genome of genetically related individuals. In accordance with one embodiment, incomplete genetic data from an embryonic cell are reconstructed at a plurality of loci using the more complete genetic data from a larger sample of diploid cells from one or both parents, with or without haploid genetic data from one or both parents. In another embodiment, the chromosome copy number can be determined from the measured genetic data, with or without genetic information from one or both parents.
    Type: Application
    Filed: April 8, 2020
    Publication date: August 6, 2020
    Applicant: Natera, Inc.
    Inventors: Matthew RABINOWITZ, Milena BANJEVIC, Zachary DEMKO, David JOHNSON, Dusan KIJACIC, Dimitri PETROV, Joshua SWEETKIND-SINGER, Jing XU
  • Publication number: 20200234158
    Abstract: Methods, systems, and non-transitory computer readable storage media are disclosed for analyzing feature impact of a machine-learning model using prototypes across analytical spaces. For example, the disclosed system can identify features of data points used to generate outputs via a machine-learning model and then map the features to a feature space and the outputs to a label space. The disclosed system can then utilize an iterative process to determine prototypes from the data points based on distances between the data points in the feature space and the label space. Furthermore, the disclosed system can then use the prototypes to determine the impact of the features within the machine-learning model based on locally sensitive directions; region variability; or mean, range, and variance of features of the prototypes.
    Type: Application
    Filed: January 22, 2019
    Publication date: July 23, 2020
    Inventors: Deepak Pai, Joshua Sweetkind-Singer, Debraj Basu
  • Publication number: 20200232036
    Abstract: Disclosed herein is a system and method for increasing the fidelity of measured genetic data, for making allele calls, and for determining the state of aneuploidy, in one or a small set of cells, or from fragmentary DNA, where a limited quantity of genetic data is available. Poorly or incorrectly measured base pairs, missing alleles and missing regions are reconstructed using expected similarities between the target genome and the genome of genetically related individuals. In accordance with one embodiment, incomplete genetic data from an embryonic cell are reconstructed at a plurality of loci using the more complete genetic data from a larger sample of diploid cells from one or both parents, with or without haploid genetic data from one or both parents. In another embodiment, the chromosome copy number can be determined from the measured genetic data, with or without genetic information from one or both parents.
    Type: Application
    Filed: March 18, 2020
    Publication date: July 23, 2020
    Applicant: Natera, Inc.
    Inventors: Matthew RABINOWITZ, Milena BANJEVIC, Zachary DEMKO, David JOHNSON, Dusan KIJACIC, Dimitri PETROV, Joshua SWEETKIND-SINGER, Jing XU
  • Publication number: 20200224273
    Abstract: Disclosed herein is a system and method for increasing the fidelity of measured genetic data, for making allele calls, and for determining the state of aneuploidy, in one or a small set of cells, or from fragmentary DNA, where a limited quantity of genetic data is available. Poorly or incorrectly measured base pairs, missing alleles and missing regions are reconstructed using expected similarities between the target genome and the genome of genetically related individuals. In accordance with one embodiment, incomplete genetic data from an embryonic cell are reconstructed at a plurality of loci using the more complete genetic data from a larger sample of diploid cells from one or both parents, with or without haploid genetic data from one or both parents. In another embodiment, the chromosome copy number can be determined from the measured genetic data, with or without genetic information from one or both parents.
    Type: Application
    Filed: March 13, 2020
    Publication date: July 16, 2020
    Applicant: Natera, Inc.
    Inventors: Matthew RABINOWITZ, Milena BANJEVIC, Zachary DEMKO, David JOHNSON, Dusan KIJACIC, Dimitri PETROV, Joshua SWEETKIND-SINGER, Jing XU
  • Patent number: 10699451
    Abstract: The present disclosure relates to systems, non-transitory computer-readable media, and methods for accurately, efficiently, and flexibly generating digital graphical representations reflecting multiple data series in-scale utilizing dynamic y-axes. In particular, in one or more embodiments, the disclosed systems generate a normalized graphical representation portraying multiple data series in a common scale with a dynamic y-axis that portrays individualized data values based on user selection of various data series. Specifically, the presently disclosed systems and methods can generate normalized values for each of the included data series, plot the normalized values along a normalized y-axis, and include a dynamic y-axis that reflects the initial values of any of the included data series.
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: June 30, 2020
    Assignee: ADOBE INC.
    Inventors: Deepak Pai, Kenneth Hahn, Joshua Sweetkind-Singer
  • Publication number: 20200190591
    Abstract: Disclosed herein is a system and method for increasing the fidelity of measured genetic data, for making allele calls, and for determining the state of aneuploidy, in one or a small set of cells, or from fragmentary DNA, where a limited quantity of genetic data is available. Poorly or incorrectly measured base pairs, missing alleles and missing regions are reconstructed using expected similarities between the target genome and the genome of genetically related individuals. In accordance with one embodiment, incomplete genetic data from an embryonic cell are reconstructed at a plurality of loci using the more complete genetic data from a larger sample of diploid cells from one or both parents, with or without haploid genetic data from one or both parents. In another embodiment, the chromosome copy number can be determined from the measured genetic data, with or without genetic information from one or both parents.
    Type: Application
    Filed: February 27, 2020
    Publication date: June 18, 2020
    Applicant: Natera, Inc.
    Inventors: Matthew RABINOWITZ, Milena BANJEVIC, Zachary DEMKO, David JOHNSON, Dusan KIJACIC, Dimitri PETROV, Joshua SWEETKIND-SINGER, Jing XU
  • Publication number: 20200193234
    Abstract: In various embodiments of the present disclosure, output data generated by a deployed machine learning model may be received. An input data anomaly may be detected based at least in part on analyzing input data of the deployed machine learning model. An output data anomaly may further be detected based at least in part on analyzing the output data of the deployed machine learning model. A determination may be made that the input data anomaly contributed to the output data anomaly based at least in part on comparing the input data anomaly to the output data anomaly. A report may be generated that is indicative of the input data anomaly and the output data anomaly, and the report may be transmitted to a client device.
    Type: Application
    Filed: December 14, 2018
    Publication date: June 18, 2020
    Inventors: Deepak Pai, Vijay Srivastava, Joshua Sweetkind-Singer, Shankar Venkitachalam
  • Publication number: 20200193658
    Abstract: The present disclosure relates to systems, non-transitory computer-readable media, and methods for accurately, efficiently, and flexibly generating digital graphical representations reflecting multiple data series in-scale utilizing dynamic y-axes. In particular, in one or more embodiments, the disclosed systems generate a normalized graphical representation portraying multiple data series in a common scale with a dynamic y-axis that portrays individualized data values based on user selection of various data series. Specifically, the presently disclosed systems and methods can generate normalized values for each of the included data series, plot the normalized values along a normalized y-axis, and include a dynamic y-axis that reflects the initial values of any of the included data series.
    Type: Application
    Filed: December 18, 2018
    Publication date: June 18, 2020
    Inventors: Deepak Pai, Kenneth Hahn, Joshua Sweetkind-Singer
  • Publication number: 20190276888
    Abstract: Disclosed herein is a system and method for increasing the fidelity of measured genetic data, for making allele calls, and for determining the state of aneuploidy, in one or a small set of cells, or from fragmentary DNA, where a limited quantity of genetic data is available. Poorly or incorrectly measured base pairs, missing alleles and missing regions are reconstructed using expected similarities between the target genome and the genome of genetically related individuals. In accordance with one embodiment, incomplete genetic data from an embryonic cell are reconstructed at a plurality of loci using the more complete genetic data from a larger sample of diploid cells from one or both parents, with or without haploid genetic data from one or both parents. In another embodiment, the chromosome copy number can be determined from the measured genetic data, with or without genetic information from one or both parents.
    Type: Application
    Filed: May 14, 2019
    Publication date: September 12, 2019
    Applicant: Natera, Inc.
    Inventors: Matthew RABINOWITZ, Milena BANJEVIC, Zachary DEMKO, David JOHNSON, Dusan KIJACIC, Dimitri PETROV, Joshua SWEETKIND-SINGER, Jing XU