Patents by Inventor Joshua T. Stecher

Joshua T. Stecher has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10384071
    Abstract: System for modifying a target structure which mediates or is associated with a biological activity, including treatment of conditions, disorders, or diseases mediated by or associated with a target structure, such as a virus, cell, subcellular structure or extracellular structure. The system can be used in methods which can be performed by application of an initiation energy to a subject in situ to activate a pharmaceutical agent directly or via an energy modulation agent, optionally in the presence of one or more plasmonics active agents, thus producing an effect on or change to the target structure.
    Type: Grant
    Filed: August 25, 2016
    Date of Patent: August 20, 2019
    Assignees: IMMUNOLIGHT, LLC., DUKE UNIVERSITY
    Inventors: Tuan Vo-Dinh, Jonathan P. Scaffidi, Venkata Gopal Reddy Chada, Benoit Lauly, Yan Zhang, Molly K. Gregas, Ian Nicholas Stanton, Joshua T. Stecher, Michael J. Therien, Frederic A. Bourke, Jr., Harold Walder, Zak Fathi, Jennifer A. Ayres, Zhenyuan Zhang, Joseph H. Simmons, Stephen John Norton
  • Patent number: 9649832
    Abstract: A polymerizable composition includes at least one monomer, a photoinitiator capable of initiating polymerization of the monomer when exposed to light, and a phosphor capable of producing light when exposed to radiation (typically X-rays). The material is particularly suitable for bonding components at ambient temperature in situations where the bond joint is not accessible to an external light source. An associated method includes: placing a polymerizable adhesive composition, including a photoinitiator and energy converting material, such as a down-converting phosphor, in contact with at least two components to be bonded to form an assembly; and, irradiating the assembly with radiation at a first wavelength, capable of conversion (down-conversion by the phosphor) to a second wavelength capable of activating the photoinitiator, to prepare items such as inkjet cartridges, wafer-to-wafer assemblies, semiconductors, integrated circuits, and the like.
    Type: Grant
    Filed: January 9, 2015
    Date of Patent: May 16, 2017
    Assignees: Immunolight, LLC, Duke University
    Inventors: Zakaryae Fathi, James Clayton, Harold Walder, Frederic A. Bourke, Jr., Ian Stanton, Jennifer Ayres, Joshua T. Stecher, Michael Therien, Eric Toone, Dave Gooden, Mark Dewhirst, Joseph A. Herbert, Diane Fels, Katherine S. Hansen
  • Publication number: 20170043178
    Abstract: Products, compositions, systems, and methods for modifying a target structure which mediates or is associated with a biological activity, including treatment of conditions, disorders, or diseases mediated by or associated with a target structure, such as a virus, cell, subcellular structure or extracellular structure. The methods may be performed in situ in a non-invasive manner by placing a nanoparticle having a metallic shell on at least a fraction of a surface in a vicinity of a target structure in a subject and applying an initiation energy to a subject thus producing an effect on or change to the target structure directly or via a modulation agent. The nanoparticle is configured, upon exposure to a first wavelength ?1, to generate a second wavelength ?2 of radiation having a higher energy than the first wavelength ?1.
    Type: Application
    Filed: August 25, 2016
    Publication date: February 16, 2017
    Applicants: IMMUNOLIGHT, LLC., DUKE UNIVERSITY
    Inventors: Tuan VO-DINH, Jonathan P. SCAFFIDI, Venkata Gopal Reddy CHADA, Benoit LAULY, Yan ZHANG, Molly K. GREGAS, Ian Nicholas STANTON, Joshua T. STECHER, Michael J. THERIEN, Frederic A. BOURKE, JR., Harold WALDER, Zak FATHI, Jennifer A. AYRES, Zhenyuan ZHANG, Joseph H. SIMMONS, Stephen John NORTON
  • Patent number: 9526913
    Abstract: A nanoparticle-based system for enhancement of emitted light inside a medium. The nanoparticle-based system includes a phosphorescent material which, upon activation, produces the emitted light, and a metallic structure attached to the phosphorescent material. The metallic structure has a surface plasmon resonance which resonates at a frequency which spectrally overlaps with one or more frequencies of the emitted light.
    Type: Grant
    Filed: January 30, 2014
    Date of Patent: December 27, 2016
    Assignees: DUKE UNIVERSITY, IMMUNOLIGHT, LLC
    Inventors: Tuan Vo-Dinh, Jonathan P. Scaffidi, Venkata Gopal Reddy Chada, Benoit Lauly, Yan Zhang, Molly K. Gregas, Ian Nicholas Stanton, Joshua T. Stecher, Michael J. Therien, Frederic A. Bourke, Jr., Harold Walder, Zak Fathi, Jennifer A. Ayres, Zhenyuan Zhang, Joseph H. Simmons, Stephen John Norton
  • Patent number: 9526914
    Abstract: Products, compositions, systems, and methods for modifying a target structure. The methods may be performed in a non-invasive manner by placing a nanoparticle having a metallic shell on at least a fraction of a surface in a vicinity of a target structure in a subject and applying an initiation energy thus producing an effect on or change to the target structure directly or via a modulation agent. The nanoparticle is configured, upon exposure to a first wavelength ?1, to generate a second wavelength ?2 of radiation having a higher energy than the first wavelength ?1. The methods may further be performed by application of an initiation energy to activate a photoactivatable agent directly or via an energy modulation agent, optionally in the presence of one or more plasmonics active agents, thus producing an effect on or change to the target structure.
    Type: Grant
    Filed: May 19, 2015
    Date of Patent: December 27, 2016
    Assignees: Duke University, Immunolight, LLC
    Inventors: Tuan Vo-Dinh, Jonathan P. Scaffidi, Venkata Gopal Reddy Chada, Benoit Lauly, Yan Zhang, Molly K. Gregas, Ian Nicholas Stanton, Joshua T. Stecher, Michael J. Therien, Frederic A. Bourke, Jr., Harold Walder, Zak Fathi, Jennifer A. Ayres, Zhenyuan Zhang, Joseph H. Simmons, Stephen John Norton
  • Publication number: 20160263393
    Abstract: Products, compositions, systems, and methods for modifying a target structure which mediates or is associated with a biological activity, including treatment of conditions, disorders, or diseases mediated by or associated with a target structure, such as a virus, cell, subcellular structure or extracellular structure. The methods may be performed in situ in a non-invasive manner by placing a nanoparticle having a metallic shell on at least a fraction of a surface in a vicinity of a target structure in a subject and applying an initiation energy to a subject thus producing an effect on or change to the target structure directly or via a modulation agent. The nanoparticle is configured, upon exposure to a first wavelength ?1, to generate a second wavelength ?2 of radiation having a higher energy than the first wavelength ?1.
    Type: Application
    Filed: February 17, 2016
    Publication date: September 15, 2016
    Applicants: IMMUNOLIGHT, LLC, DUKE UNIVERSITY
    Inventors: Tuan VO-DINH, Jonathan P. SCAFFIDI, Venkata Gopal Reddy CHADA, Benoit LAULY, Yan ZHANG, Molly K. GREGAS, Ian Nicholas STANTON, Joshua T. STECHER, Michael J. THERIEN, Frederic A. BOURKE, JR., Harold WALDER, Zak FATHI, Jennifer A. AYRES, Zhenyuan ZHANG, Joseph H. SIMMONS, Stephen John NORTON
  • Patent number: 9302116
    Abstract: Products, compositions, systems, and methods for modifying a target structure which mediates or is associated with a biological activity, including treatment of conditions, disorders, or diseases mediated by or associated with a target structure, such as a virus, cell, subcellular structure or extracellular structure. The methods may be performed in situ in a non-invasive manner by placing a nanoparticle having a metallic shell on at least a fraction of a surface in a vicinity of a target structure in a subject and applying an initiation energy to a subject thus producing an effect on or change to the target structure directly or via a modulation agent. The nanoparticle is configured, upon exposure to a first wavelength ?1, to generate a second wavelength ?2 of radiation having a higher energy than the first wavelength ?1.
    Type: Grant
    Filed: April 21, 2010
    Date of Patent: April 5, 2016
    Assignees: Duke University, Immunolight, LLC
    Inventors: Tuan Vo-Dinh, Jonathan P. Scaffidi, Venkata Gopal Reddy Chada, Benoit Lauly, Yan Zhang, Molly K. Gregas, Ian N. Stanton, Joshua T. Stecher, Michael J. Therien, Frederic A. Bourke, Jr., Harold Walder, Zak Fathi, Jennifer A. Ayres, Zhenyuan Zhang, Joseph H. Simmons, Stephen John Norton
  • Publication number: 20150251016
    Abstract: Products, compositions, systems, and methods for modifying a target structure. The methods may be performed in a non-invasive manner by placing a nanoparticle having a metallic shell on at least a fraction of a surface in a vicinity of a target structure in a subject and applying an initiation energy thus producing an effect on or change to the target structure directly or via a modulation agent. The nanoparticle is configured, upon exposure to a first wavelength ?1, to generate a second wavelength ?2 of radiation having a higher energy than the first wavelength ?1. The methods may further be performed by application of an initiation energy to activate a photoactivatable agent directly or via an energy modulation agent, optionally in the presence of one or more plasmonics active agents, thus producing an effect on or change to the target structure. Kits containing products or compositions formulated or configured and systems for use in practicing these methods.
    Type: Application
    Filed: May 19, 2015
    Publication date: September 10, 2015
    Applicants: IMMUNOLIGHT, LLC, DUKE UNIVERSITY
    Inventors: Tuan VO-DINH, Jonathan P. SCAFFIDI, Venkata Gopal Reddy CHADA, Benoit LAULY, Yan ZHANG, Molly K. GREGAS, Ian Nicholas STANTON, Joshua T. STECHER, Michael J. THERIEN, Frederic A. BOURKE, JR., Harold WALDER, Zak FATHI, Jennifer A. AYRES, Zhenyuan ZHANG, Joseph H. SIMMONS, Stephen John NORTON
  • Publication number: 20150246521
    Abstract: A polymerizable composition includes at least one monomer, a photoinitiator capable of initiating polymerization of the monomer when exposed to light, and a phosphor capable of producing light when exposed to radiation (typically X-rays). The material is particularly suitable for bonding components at ambient temperature in situations where the bond joint is not accessible to an external light source. An associated method includes: placing a polymerizable adhesive composition, including a photoinitiator and energy converting material, such as a down-converting phosphor, in contact with at least two components to be bonded to form an assembly; and, irradiating the assembly with radiation at a first wavelength, capable of conversion (down-conversion by the phosphor) to a second wavelength capable of activating the photoinitiator, to prepare items such as inkjet cartridges, wafer-to-wafer assemblies, semiconductors, integrated circuits, and the like.
    Type: Application
    Filed: January 9, 2015
    Publication date: September 3, 2015
    Applicants: lmmunolight, LLC, Duke University
    Inventors: Zakaryae FATHI, James CLAYTON, Harold WALDER, Frederic A. BOURKE, JR., Ian STANTON, Jennifer AYRES, Joshua T. STECHER, Michael THERIEN, Eric TOONE, Dave GOODEN, Mark DEWHIRST, Joseph A. HERBERT, Diane FELS, Katherine S. HANSEN
  • Patent number: 9023249
    Abstract: A polymerizable composition includes at least one monomer, a photoinitiator capable of initiating polymerization of the monomer when exposed to light, and a phosphor capable of producing light when exposed to radiation (typically X-rays). The material is particularly suitable for bonding components at ambient temperature in situations where the bond joint is not accessible to an external light source. An associated method includes: placing a polymerizable adhesive composition, including a photoinitiator and energy converting material, such as a down-converting phosphor, in contact with at least two components to be bonded to form an assembly; and, irradiating the assembly with radiation at a first wavelength, capable of conversion (down-conversion by the phosphor) to a second wavelength capable of activating the photoinitiator, to prepare items such as inkjet cartridges, wafer-to-wafer assemblies, semiconductors, integrated circuits, and the like.
    Type: Grant
    Filed: May 6, 2011
    Date of Patent: May 5, 2015
    Assignees: Immunolight, LLC, Duke University
    Inventors: Zakaryae Fathi, James Clayton, Harold Walder, Frederic A. Bourke, Jr., Ian Stanton, Jennifer Ayres, Joshua T. Stecher, Michael Therien, Eric Toone, Dave Gooden, Mark Dewhirst, Joseph A. Herbert, Diane Fels, Katherine S. Hansen
  • Publication number: 20140243934
    Abstract: Products, compositions, systems, and methods for modifying a target structure. The methods may be performed in a non-invasive manner by placing a nanoparticle having a metallic shell on at least a fraction of a surface in a vicinity of a target structure in a subject and applying an initiation energy thus producing an effect on or change to the target structure directly or via a modulation agent. The nanoparticle is configured, upon exposure to a first wavelength ?1, to generate a second wavelength ?2 of radiation having a higher energy than the first wavelength ?1. The methods may further be performed by application of an initiation energy to activate a photoactivatable agent directly or via an energy modulation agent, optionally in the presence of one or more plasmonics active agents, thus producing an effect on or change to the target structure. Kits containing products or compositions formulated or configured and systems for use in practicing these methods.
    Type: Application
    Filed: January 30, 2014
    Publication date: August 28, 2014
    Applicants: DUKE UNIVERSITY, IMMUNOLIGHT, LLC
    Inventors: Tuan VO-DINH, Jonathan P. Scaffidi, Venkata Gopal Reddy Chada, Benoit Lauly, Yan Zhang, Molly K. Gregas, Ian Nicholas Stanton, Joshua T. Stecher, Michael J. Therien, Frederic A. Bourke, JR., Harold Walder, Zak Fathi, Jennifer A. Ayres, Zhenyuan Zhang, Joseph H. Simmons, Stephen John Norton
  • Patent number: 8618509
    Abstract: A system for energy upconversion and/or down conversion and a system for producing a photostimulated reaction in a medium. These systems include 1) a nanoparticle configured, upon exposure to a first wavelength ?1 of radiation, to generate a second wavelength ?2 of radiation having a higher energy than the first wavelength ?1 and 2) a metallic structure disposed in relation to the nanoparticle. A physical characteristic of the metallic structure is set to a value where a surface plasmon resonance in the metallic structure resonates at a frequency which provides a spectral overlap with either the first wavelength ?1 or the second wavelength ?2, or with both ?1 and ?2. The system for producing a photostimulated reaction in a medium includes a receptor disposed in the medium in proximity to the nanoparticle which, upon activation by the second wavelength ?2, generates the photostimulated reaction.
    Type: Grant
    Filed: January 2, 2013
    Date of Patent: December 31, 2013
    Assignees: Immunolight, LLC, Duke University
    Inventors: Tuan Vo-Dinh, Jonathan P. Scaffidi, Venkata Gopal Reddy Chada, Benoit Lauly, Yan Zhang, Molly K. Gregas, Ian Nicholas Stanton, Joshua T. Stecher, Michael J. Therien, Frederic A. Bourke, Jr., Zak Fathi, Jennifer Ann Ayres, Zhenyuan Zhang, Joseph H. Simmons, Stephen John Norton
  • Patent number: 8389958
    Abstract: A system for energy upconversion and/or down conversion and a system for producing a photostimulated reaction in a medium. These systems include 1) a nanoparticle configured, upon exposure to a first wavelength ?1 of radiation, to generate a second wavelength ?2 of radiation having a higher energy than the first wavelength ?1 and 2) a metallic structure disposed in relation to the nanoparticle. A physical characteristic of the metallic structure is set to a value where a surface plasmon resonance in the metallic structure resonates at a frequency which provides a spectral overlap with either the first wavelength ?1 or the second wavelength ?2, or with both ?1 and ?2. The system for producing a photostimulated reaction in a medium includes a receptor disposed in the medium in proximity to the nanoparticle which, upon activation by the second wavelength ?2, generates the photostimulated reaction.
    Type: Grant
    Filed: March 16, 2010
    Date of Patent: March 5, 2013
    Assignees: Duke University, Immunolight, LLC
    Inventors: Tuan Vo-Dinh, Jonathan P. Scaffidi, Venkata Gopal Reddy Chada, Benoit Lauly, Yan Zhang, Molly K. Gregas, Ian Nicholas Stanton, Joshua T. Stecher, Michael J. Therien, Frederic A. Bourke, Jr., Zak Fathi, Jennifer Ann Ayres, Zhenyuan Zhang, Joseph H. Simmons, Stephen John Norton
  • Publication number: 20120089180
    Abstract: A polymerizable composition includes at least one monomer, a photoinitiator capable of initiating polymerization of the monomer when exposed to light, and a phosphor capable of producing light when exposed to radiation (typically X-rays). The material is particularly suitable for bonding components at ambient temperature in situations where the bond joint is not accessible to an external light source. An associated method includes: placing a polymerizable adhesive composition, including a photoinitiator and energy converting material, such as a down-converting phosphor, in contact with at least two components to be bonded to form an assembly; and, irradiating the assembly with radiation at a first wavelength, capable of conversion (down-conversion by the phosphor) to a second wavelength capable of activating the photoinitiator, to prepare items such as inkjet cartridges, wafer-to-wafer assemblies, semiconductors, integrated circuits, and the like.
    Type: Application
    Filed: May 6, 2011
    Publication date: April 12, 2012
    Applicants: Duke University, Immunolight, LLC
    Inventors: Zakaryae Fathi, James Clayton, Harold Walder, Frederic A. Bourke, JR., Ian Stanton, Jennifer Ayres, Joshua T. Stecher, Michael Therien, Eric Toone, Dave Gooden, Mark Dewhirst, Joseph A. Herbert, Diane Fels, Katherine S. Hansen
  • Publication number: 20110021970
    Abstract: Products, compositions, systems, and methods for modifying a target structure which mediates or is associated with a biological activity, including treatment of conditions, disorders, or diseases mediated by or associated with a target structure, such as a virus, cell, subcellular structure or extracellular structure. The methods may be performed in situ in a non-invasive manner by placing a nanoparticle having a metallic shell on at least a fraction of a surface in a vicinity of a target structure in a subject and applying an initiation energy to a subject thus producing an effect on or change to the target structure directly or via a modulation agent. The nanoparticle is configured, upon exposure to a first wavelength ?1, to generate a second wavelength ?2 of radiation having a higher energy than the first wavelength ?1.
    Type: Application
    Filed: April 21, 2010
    Publication date: January 27, 2011
    Applicants: Duke University, Immunolight, LLC
    Inventors: Tuan VO-DINH, Jonathan P. SCAFFIDI, Venkata Gopal Reddy CHADA, Benoit LAULY, Yan ZHANG, Molly K. GREGAS, Ian N. STANTON, Joshua T. STECHER, Michael J. THERIEN, Frederic A. BOURKE, JR., Harold WALDER, Zak FATHI, Jennifer A. AYRES, Zhenyuan ZHANG, Joseph H. SIMMONS, Stephen John NORTON
  • Publication number: 20100261263
    Abstract: A system for energy upconversion and/or down conversion and a system for producing a photostimulated reaction in a medium. These systems include 1) a nanoparticle configured, upon exposure to a first wavelength ?1 of radiation, to generate a second wavelength ?2 of radiation having a higher energy than the first wavelength ?1 and 2) a metallic structure disposed in relation to the nanoparticle. A physical characteristic of the metallic structure is set to a value where a surface plasmon resonance in the metallic structure resonates at a frequency which provides a spectral overlap with either the first wavelength ?1 or the second wavelength ?2, or with both ?1 and ?2. The system for producing a photostimulated reaction in a medium includes a receptor disposed in the medium in proximity to the nanoparticle which, upon activation by the second wavelength ?2, generates the photostimulated reaction.
    Type: Application
    Filed: March 16, 2010
    Publication date: October 14, 2010
    Applicants: Duke University, Immunolight, LLC
    Inventors: Tuan VO-DINH, Jonathan P. SCAFFIDI, Venkata Gopal Reddy CHADA, Benoit LAULY, Yan ZHANG, Molly K. GREGAS, Ian N. STANTON, Joshua T. STECHER, Michael J. THERIEN, Frederic A. BOURKE, JR., Zak FATHI, Jennifer A. AYRES, Zhenyuan ZHANG, Joseph H. SIMMONS, Stephen John Norton
  • Publication number: 20090148348
    Abstract: A method of treating a plastic surface with fluorine gas to decrease adsorption of hydrophobic solute molecules to the surface is provided. The method can include treating a surface with a first gas comprising fluorine gas and a second gas comprising oxygen gas, water vapor, or both oxygen gas and water vapor. Plastics treated using the method provide useful drug discovery and biochemical tools for the testing, handling, and storage of solutions containing low concentrations of hydrophobic solutes. Microfluidic devices containing treated plastic interior surfaces and methods of using such devices to make concentration-dependent measurements are also described.
    Type: Application
    Filed: August 10, 2006
    Publication date: June 11, 2009
    Applicant: EKSIGENT TECHNOLOGIES, LLC
    Inventors: Kenneth I. Pettigrew, Pang-Jen Craig Kung, Joshua T. Stecher, Gregory Fenton Smith, Hugh C. Crenshaw