Patents by Inventor Joshua WEEKS
Joshua WEEKS has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11653867Abstract: A system for providing a standard electrocardiogram (ECG) signal for a human body using contactless ECG sensors for outputting to exiting medical equipment or for storage or viewing on a remote device. The system comprises a digital processing module (DPM) adapted to connect to an array of contactless ECG sensors provided in a fabric or the like. A selection mechanism is embedded into the DPM which allows the DPM to identify body parts using the ECG signals of the different ECG sensors and select for each body part the best sensor lead. The DPM may then produce the standard ECG signal using the selected ECG signals for the different body parts detected. The system is adapted to continuously re-examine the selection to ensure that the best leads are selected for a given body part following a movement of the body part, thereby, allowing for continuous and un-interrupted ECG monitoring of the patient.Type: GrantFiled: February 1, 2021Date of Patent: May 23, 2023Assignee: RR SEQUENCES INC.Inventors: Deepak Bobby Jain, Joshua Weeks, David Nadezhdin, Jean-Francois Asselin
-
Publication number: 20220007984Abstract: A system for providing a standard electrocardiogram (ECG) signal for a human body using contactless ECG sensors for outputting to exiting medical equipment or for storage or viewing on a remote device. The system comprises a digital processing module (DPM) adapted to connect to an array of contactless ECG sensors provided in a fabric or the like. A selection mechanism is embedded into the DPM which allows the DPM to identify body parts using the ECG signals of the different ECG sensors and select for each body part the best sensor lead. The DPM may then produce the standard ECG signal using the selected ECG signals for the different body parts detected. The system is adapted to continuously re-examine the selection to ensure that the best leads are selected for a given body part following a movement of the body part, thereby, allowing for continuous and un-interrupted ECG monitoring of the patient.Type: ApplicationFiled: February 1, 2021Publication date: January 13, 2022Inventors: Deepak Bobby JAIN, Joshua WEEKS, David NADEZHDIN, Jean-Francois ASSELIN
-
Publication number: 20210219859Abstract: A system for providing a standard electrocardiogram (ECG) signal for a human body using contactless ECG sensors for outputting to exiting medical equipment or for storage or viewing on a remote device. The system comprises a digital processing module (DPM) adapted to connect to an array of contactless ECG sensors provided in a fabric or the like. A selection mechanism is embedded into the DPM which allows the DPM to identify body parts using the ECG signals of the different ECG sensors and select for each body part the best sensor lead. The DPM may then produce the standard ECG signal using the selected ECG signals for the different body parts detected. The system is adapted to continuously re-examine the selection to ensure that the best leads are selected for a given body part following a movement of the body part, thereby, allowing for continuous and un-interrupted ECG monitoring of the patient.Type: ApplicationFiled: August 21, 2018Publication date: July 22, 2021Inventors: Deepak Bobby JAIN, Joshua WEEKS, David NADEZHDIN, Jean-Francois ASSELIN
-
Patent number: 11064927Abstract: A system for providing a standard electrocardiogram (ECG) signal for a human body using contactless ECG sensors for outputting to exiting medical equipment or for storage or viewing on a remote device. The system comprises a digital processing module (DPM) adapted to connect to an array of contactless ECG sensors provided in a fabric or the like. A selection mechanism is embedded into the DPM which allows the DPM to identify body parts using the ECG signals of the different ECG sensors and select for each body part the best sensor lead. The DPM may then produce the standard ECG signal using the selected ECG signals for the different body parts detected. The system is adapted to continuously re-examine the selection to ensure that the best leads are selected for a given body part following a movement of the body part, thereby, allowing for continuous and un-interrupted ECG monitoring of the patient.Type: GrantFiled: August 21, 2018Date of Patent: July 20, 2021Assignee: RR Sequences Inc.Inventors: Deepak Bobby Jain, Joshua Weeks, David Nadezhdin, Jean-Francois Asselin
-
Patent number: 10939840Abstract: A system for providing a standard electrocardiogram (ECG) signal for a human body using contactless ECG sensors for outputting to exiting medical equipment or for storage or viewing on a remote device. The system comprises a digital processing module (DPM) adapted to connect to an array of contactless ECG sensors provided in a fabric or the like. A selection mechanism is embedded into the DPM which allows the DPM to identify body parts using the ECG signals of the different ECG sensors and select for each body part the best sensor lead. The DPM may then produce the standard ECG signal using the selected ECG signals for the different body parts detected. The system is adapted to continuously re-examine the selection to ensure that the best leads are selected for a given body part following a movement of the body part, thereby, allowing for continuous and un-interrupted ECG monitoring of the patient.Type: GrantFiled: July 17, 2018Date of Patent: March 9, 2021Assignee: RR Sequences Inc.Inventors: Deepak Bobby Jain, Joshua Weeks, David Nadezhdin, Jean-Francois Asselin
-
Publication number: 20190000340Abstract: A system for providing a standard electrocardiogram (ECG) signal for a human body using contactless ECG sensors for outputting to exiting medical equipment or for storage or viewing on a remote device. The system comprises a digital processing module (DPM) adapted to connect to an array of contactless ECG sensors provided in a fabric or the like. A selection mechanism is embedded into the DPM which allows the DPM to identify body parts using the ECG signals of the different ECG sensors and select for each body part the best sensor lead. The DPM may then produce the standard ECG signal using the selected ECG signals for the different body parts detected. The system is adapted to continuously re-examine the selection to ensure that the best leads are selected for a given body part following a movement of the body part, thereby, allowing for continuous and un-interrupted ECG monitoring of the patient.Type: ApplicationFiled: August 21, 2018Publication date: January 3, 2019Inventors: Deepak Bobby JAIN, Joshua WEEKS, David NADEZHDIN, Jean-Francois ASSELIN
-
Publication number: 20180317799Abstract: A system for providing a standard electrocardiogram (ECG) signal for a human body using contactless ECG sensors for outputting to exiting medical equipment or for storage or viewing on a remote device. The system comprises a digital processing module (DPM) adapted to connect to an array of contactless ECG sensors provided in a fabric or the like. A selection mechanism is embedded into the DPM which allows the DPM to identify body parts using the ECG signals of the different ECG sensors and select for each body part the best sensor lead. The DPM may then produce the standard ECG signal using the selected ECG signals for the different body parts detected. The system is adapted to continuously re-examine the selection to ensure that the best leads are selected for a given body part following a movement of the body part, thereby, allowing for continuous and un-interrupted ECG monitoring of the patient.Type: ApplicationFiled: July 17, 2018Publication date: November 8, 2018Inventors: Deepak Bobby JAIN, Joshua WEEKS, David NADEZHDIN, Jean-Francois ASSELIN
-
Patent number: 10052042Abstract: A system for providing a standard electrocardiogram (ECG) signal for a human body using contactless ECG sensors for outputting to exiting medical equipment or for storage or viewing on a remote device. The system comprises a digital processing module (DPM) adapted to connect to an array of contactless ECG sensors provided in a fabric or the like. A selection mechanism is embedded into the DPM which allows the DPM to identify body parts using the ECG signals of the different ECG sensors and select for each body part the best sensor lead. The DPM may then produce the standard ECG signal using the selected ECG signals for the different body parts detected. The system is adapted to continuously re-examine the selection to ensure that the best leads are selected for a given body part following a movement of the body part, thereby, allowing for continuous and un-interrupted ECG monitoring of the patient.Type: GrantFiled: September 23, 2015Date of Patent: August 21, 2018Assignee: RR SEQUENCES INC.Inventors: Deepak Bobby Jain, Joshua Weeks, David Nadezhdin, Jean-Francois Asselin
-
Publication number: 20160287128Abstract: A system for providing a standard electrocardiogram (ECG) signal for a human body using contactless ECG sensors for outputting to exiting medical equipment or for storage or viewing on a remote device. The system comprises a digital processing module (DPM) adapted to connect to an array of contactless ECG sensors provided in a fabric or the like. A selection mechanism is embedded into the DPM which allows the DPM to identify body parts using the ECG signals of the different ECG sensors and select for each body part the best sensor lead. The DPM may then produce the standard ECG signal using the selected ECG signals for the different body parts detected. The system is adapted to continuously re-examine the selection to ensure that the best leads are selected for a given body part following a movement of the body part, thereby, allowing for continuous and un-interrupted ECG monitoring of the patient.Type: ApplicationFiled: September 23, 2015Publication date: October 6, 2016Inventors: Deepak Bobby JAIN, Joshua WEEKS, David NADEZHDIN, Jean-Francois ASSELIN