Patents by Inventor Jotaro Akiyama

Jotaro Akiyama has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240133736
    Abstract: Low-cost, robust, and high performance microelectromechanical systems (MEMS) acoustic sensors are described. Described MEMS acoustic sensors can comprise a set of etch release structures in the acoustic sensor membrane that facilitates rapid and/or uniform etch release of the acoustic sensor membrane. In addition, MEMS acoustic sensors can comprise a set of membrane position control structures of the acoustic sensor membrane that can reduce the bending stress of the acoustic sensor membrane. MEMS acoustic sensors can further comprise a three layer acoustic sensor membrane that provides increased robustness. Further design flexibility and improvements are described that provide increased robustness and/or cost savings, and a low cost fabrication process for MEMS acoustic sensors is provided.
    Type: Application
    Filed: October 18, 2023
    Publication date: April 25, 2024
    Inventors: Pirmin Rombach, Kurt Rasmussen, Dennis Mortensen, Jan Ravnkilde, Cheng-Yen Liu, Jotaro Akiyama, Sushil Bharatan, Troy Chase
  • Publication number: 20230356998
    Abstract: In an embodiment, a method for fabricating a Microelectromechanical System (MEMS) microphone includes depositing, on a frontside of a wafer, a first oxide layer over a silicon nitride thin film and over and adjacent the wafer, wherein the silicon nitride thin film is disposed over the wafer, depositing a membrane protection layer over the first oxide layer between a first side of a first cavity formed in the wafer and a second side of a second cavity formed in the wafer, depositing a second oxide layer over and adjacent the membrane protection layer, depositing a first membrane nitride layer over the second oxide layer, depositing a membrane polysilicon layer over the first membrane nitride layer, depositing a second membrane nitride layer over the membrane polysilicon layer, depositing a third oxide layer over the second membrane nitride layer and depositing a fourth oxide layer over the third oxide layer.
    Type: Application
    Filed: July 24, 2023
    Publication date: November 9, 2023
    Inventors: Pirmin Hermann Otto Rombach, Kurt Rasmussen, Dennis Mortensen, Cheng-Yen Liu, Morten Ginnerup, Jan Tue Ravnkilde, Jotaro Akiyama
  • Publication number: 20230296461
    Abstract: A pressure sensor includes a first electrode, a plurality of cavities, and a second electrode. The second electrode is disposed opposite the first electrode through the plurality of cavities. The second electrode includes a flat structure spanning two adjacent cavities of the plurality of cavities.
    Type: Application
    Filed: February 23, 2023
    Publication date: September 21, 2023
    Inventors: Yoshitaka Sasaki, Jotaro Akiyama, Sal Akram, Yaoching Wang, Weng Shen Su, Tsung Lin Tang, Ting-Yuan Liu, Yuki Shibano, Chung-Hsien Lin
  • Patent number: 11746001
    Abstract: A microelectromechanical (MEMS) microphone with membrane trench reinforcements and method of fabrication is provided. The MEMS microphone includes a flexible plate and a rigid plate mechanically coupled to the flexible plate. The MEMS microphone includes a stoppage member affixed to the rigid plate and extending perpendicular relative to a surface of the rigid plate opposite the surface of the flexible plate. The stoppage member limits motion of the flexible plate. The rigid plate includes a reverse bending edge that include a first lateral etch stop that includes a first corner radius and a second lateral etch stop that includes a second corner radius. The first corner radius is more than 100 nanometers and the second corner radius is more than 25 nanometers. Further, a lateral step width between the first corner radius and the second corner radius is less than around 4 micrometers.
    Type: Grant
    Filed: May 5, 2021
    Date of Patent: September 5, 2023
    Assignees: TDK Electronics AG, TDK Corporation
    Inventors: Pirmin Hermann Otto Rombach, Kurt Rasmussen, Dennis Mortensen, Cheng-Yen Liu, Morten Ginnerup, Jan Tue Ravnkilde, Jotaro Akiyama
  • Publication number: 20230118429
    Abstract: A microelectromechanical (MEMS) microphone with membrane trench reinforcements and method of fabrication is provided. The MEMS microphone includes a flexible plate and a rigid plate mechanically coupled to the flexible plate. The MEMS microphone includes a stoppage member affixed to the rigid plate and extending perpendicular relative to a surface of the rigid plate opposite the surface of the flexible plate. The stoppage member limits motion of the flexible plate. The rigid plate includes a reverse bending edge that includes a first lateral etch stop that includes a first corner radius and a second corner radius. The first corner radius is more than 100 nanometers and the second corner radius is more than 25 nanometers. Further, a lateral step width between the first corner radius and the second corner radius is less than around 4 micrometers.
    Type: Application
    Filed: December 20, 2022
    Publication date: April 20, 2023
    Inventors: Pirmin Rombach, Kurt Rasmussen, Dennis Mortensen, Cheng-Yen Liu, Morten Ginnerup, Jan Ravnkilde, Jotaro Akiyama
  • Publication number: 20210347635
    Abstract: A microelectromechanical (MEMS) microphone with membrane trench reinforcements and method of fabrication is provided. The MEMS microphone includes a flexible plate and a rigid plate mechanically coupled to the flexible plate. The MEMS microphone includes a stoppage member affixed to the rigid plate and extending perpendicular relative to a surface of the rigid plate opposite the surface of the flexible plate. The stoppage member limits motion of the flexible plate. The rigid plate includes a reverse bending edge that include a first lateral etch stop that includes a first corner radius and a second lateral etch stop that includes a second corner radius. The first corner radius is more than 100 nanometers and the second corner radius is more than 25 nanometers. Further, a lateral step width between the first corner radius and the second corner radius is less than around 4 micrometers.
    Type: Application
    Filed: May 5, 2021
    Publication date: November 11, 2021
    Inventors: Pirmin Rombach, Kurt Rasmussen, Dennis Mortensen, Cheng-Yen Liu, Morten Ginnerup, Jan Ravnkilde, Jotaro Akiyama
  • Patent number: 10508025
    Abstract: A MEMS switch includes a first signal line provided in a first beam, a first GND adjacent to the first signal line, a second signal line provided in a second beam, and a second GND adjacent to the second signal line. A contact terminal is fixed to any one of the first signal line and the second signal line and performs connection between the first signal line and the second signal line according to deformation of the first beam.
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: December 17, 2019
    Assignee: TDK CORPORATION
    Inventors: Jotaro Akiyama, Kenji Endou, Takashi Aoyagi, Katsunori Osanai, Tohru Inoue
  • Publication number: 20190077655
    Abstract: A MEMS switch includes a first signal line provided in a first beam, a first GND adjacent to the first signal line, a second signal line provided in a second beam, and a second GND adjacent to the second signal line. A contact terminal is fixed to any one of the first signal line and the second signal line and performs connection between the first signal line and the second signal line according to deformation of the first beam.
    Type: Application
    Filed: September 2, 2016
    Publication date: March 14, 2019
    Applicant: TDK CORPORATION
    Inventors: Jotaro AKIYAMA, Kenji ENDOU, Takashi AOYAGI, Katsunori OSANAI, Tohru INOUE
  • Publication number: 20090243100
    Abstract: Methods to form a three-dimensionally curved pad in a substrate and integrated circuits incorporating such a substrate are disclosed. An example method to form a three-dimensionally curved pad comprises isotropically etching a portion of a surface of a substrate to form a recess having a radial shape, forming a conductive layer in the recess to form the bonding pad, and placing a conductive element in the pad.
    Type: Application
    Filed: March 27, 2008
    Publication date: October 1, 2009
    Inventor: Jotaro Akiyama