Patents by Inventor Jouya Jadidian

Jouya Jadidian has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200088870
    Abstract: An electronic device that performs radar measurements is described. This electronic device includes independent, co-located radar transceivers, and the independent radar transceivers are not synchronized with each other. Moreover, the radar transceivers may have different fields of view that partially overlap. During operation, the radar transceivers transmit radar signals and perform the radar measurements. Then, based at least in part on the radar measurements, the electronic device determines a location of an object in an environment around the electronic device. For example, the location may include an angular position that is determined from the amplitudes of the radar measurements performed using at least a subset of the radar transceivers. Furthermore, the object may be an individual, and the electronic device may identify the individual based at least in part on the radar measurements. Note that the radar measurements performed by a given radar transceiver do not provide angular information.
    Type: Application
    Filed: September 17, 2018
    Publication date: March 19, 2020
    Inventors: Mikheil Tsiklauri, Jouya Jadidian, Vaneet Pathak
  • Patent number: 10491048
    Abstract: A method includes determining, by a base station including a number of transmitting coils, a first number of mutual magnetic parameters, each mutual magnetic parameter being associated with one of the transmitting coils and a receiving coil of at least one receiving coil associated with at least one electronic device remotely located from and to be remotely charged by the base station, determining a plurality of control signals based on the first number of mutual magnetic parameters, each control signal being associated with a corresponding one of the transmitting coils, providing each control signal to a driving circuit coupled to the control signal's corresponding transmitting coil, and using each control signal to cause the driving circuit coupled to the control signal's corresponding transmitting coil to cause a current with a magnitude and phase determined from the control signal to flow in the corresponding transmitting coil.
    Type: Grant
    Filed: October 11, 2017
    Date of Patent: November 26, 2019
    Assignee: Massachusetts Institute of Technology
    Inventors: Jouya Jadidian, Dina Katabi
  • Patent number: 10418863
    Abstract: A mobile charging device may be used to move a battery or a power cord to a target device. The target device may be a vehicle or other equipment with a battery. Power from the power cord or battery in the charging device may be used to provide power to the target device to recharge the battery in the target device. The charging device may couple a power cord to the target device, may couple a connector in the charging device to the target device, or may use a wireless power transfer element such as a coil antenna to transfer power wirelessly to the target device. Sensors may be used to facilitate alignment between the charging device and target device. Sensors may also be used to dynamically detect and avoid foreign objects in the path of the charging device.
    Type: Grant
    Filed: December 6, 2018
    Date of Patent: September 17, 2019
    Assignee: Apple Inc.
    Inventors: Jouya Jadidian, Steven W. Cabral, Vaneet Pathak
  • Publication number: 20190199144
    Abstract: A wireless power system uses a wireless power transmitting device to transmit wireless power to wireless power receiving devices. The wireless power transmitting device has wireless power transmitting coils that extend under a wireless charging surface. Non-power-transmitting coils and magnetic sensors may be included in the wireless power transmitting device. During wireless power transfer operations, control circuitry in the wireless power transmitting device adjusts drive signals applied to the coils to reduce ambient magnetic fields. The drive signal adjustments are made based on device type information and other information on the wireless power receiving devices and/or magnetic sensor readings from the magnetic sensors. In-phase or out-of-phase drive signals are applied to minimize ambient fields depending on device type.
    Type: Application
    Filed: May 15, 2018
    Publication date: June 27, 2019
    Inventors: Jouya Jadidian, Martin Schauer, Andro Radchenko, Cheung-Wei Lam, Ketan Shringarpure, Vaneet Pathak
  • Publication number: 20190199137
    Abstract: A wireless power system may use a wireless power transmitting device to transmit wireless power to a wireless power receiving device. The wireless power transmitting device may have microwave antennas that extend along an axis in a staggered arrangement. In the staggered arrangement, the microwave antennas are positioned on alternating sides of the axis. Each microwave antenna is elongated along a dimension that is perpendicular to the axis. Multiple antennas may overlap a wireless power receiving antenna in the wireless power receiving device. Control circuitry may use oscillator and amplifier circuitry to provide antennas that have been overlapped by the wireless power receiving antenna with drive signals. The drive signals may be adjusted based on feedback from the wireless power receiving device to enhance power transmission efficiency. The system may have a wireless power transmitting device with inductive wireless power transmitting coils.
    Type: Application
    Filed: February 22, 2018
    Publication date: June 27, 2019
    Inventors: Bing Jiang, Martin Schauer, Indranil S. Sen, Jouya Jadidian, Mark D. Neumann, Mohit Narang, Vaneet Pathak, Yi Jiang
  • Publication number: 20190027298
    Abstract: A shield for redirecting magnetic field generated from a plurality of transmitter coils includes a ferromagnetic structure divided into segments by a plurality of boundary regions, each segment comprises a first material having a first magnetic permeability and each boundary region comprises a second material having a second magnetic permeability lower than the first magnetic permeability, where the plurality of boundary regions are configured to resist a propagation of magnetic field from a first area of the ferromagnetic structure to a second area of the ferromagnetic structure, where the first area intercepts the magnetic field generated from at least one active transmitter coil of the plurality of transmitter coils.
    Type: Application
    Filed: July 24, 2017
    Publication date: January 24, 2019
    Applicant: Apple Inc.
    Inventors: Jouya Jadidian, Vaneet Pathak, Martin Schauer, Cheung-Wei Lam, Darshan R. Kasar, Christopher S. Graham, Andro Radchenko
  • Patent number: 10164469
    Abstract: Wireless power may be transferred using wireless power elements such as coil antennas for inductive wireless power transfer technology or patch antennas for capacitive wireless power transfer technology. These antennas in source equipment may couple in a near-field region to antennas implemented in target equipment. Wireless power may also be transferred from the source equipment to the target equipment using radiating antennas in their far-field regions. Wireless power transfer may be optimized by performing channel estimation operations. Foreign objects can be detected and located using sensors or by analyzing the quality of wireless channels. Optimum power transfer settings may be used to maximize wireless power transfer to a set of the antennas in the target equipment while minimizing power transfer to the foreign object.
    Type: Grant
    Filed: September 14, 2016
    Date of Patent: December 25, 2018
    Assignee: Apple Inc.
    Inventors: Jouya Jadidian, Steven W. Cabral, Vaneet Pathak
  • Patent number: 10153668
    Abstract: A mobile charging device may be used to move a battery or a power cord to a target device. The target device may be a vehicle or other equipment with a battery. Power from the power cord or battery in the charging device may be used to provide power to the target device to recharge the battery in the target device. The charging device may couple a power cord to the target device, may couple a connector in the charging device to the target device, or may use a wireless power transfer element such as a coil antenna to transfer power wirelessly to the target device. Sensors may be used to facilitate alignment between the charging device and target device. Sensors may also be used to dynamically detect and avoid foreign objects in the path of the charging device.
    Type: Grant
    Filed: September 14, 2016
    Date of Patent: December 11, 2018
    Assignee: Apple Inc.
    Inventors: Jouya Jadidian, Steven W. Cabral, Vaneet Pathak
  • Publication number: 20180175635
    Abstract: A method includes determining, by a base station including a number of transmitting coils, a first number of mutual magnetic parameters, each mutual magnetic parameter being associated with one of the transmitting coils and a receiving coil of at least one receiving coil associated with at least one electronic device remotely located from and to be remotely charged by the base station, determining a plurality of control signals based on the first number of mutual magnetic parameters, each control signal being associated with a corresponding one of the transmitting coils, providing each control signal to a driving circuit coupled to the control signal's corresponding transmitting coil, and using each control signal to cause the driving circuit coupled to the control signal's corresponding transmitting coil to cause a current with a magnitude and phase determined from the control signal to flow in the corresponding transmitting coil.
    Type: Application
    Filed: October 11, 2017
    Publication date: June 21, 2018
    Inventors: Jouya Jadidian, Dina Katabi
  • Publication number: 20180166928
    Abstract: Wireless power transmitting equipment may transmit wireless power signals to wireless power receiving equipment. The wireless power transmitting equipment may have a wireless power transmitter coupled to a wireless power transmitting coil. The wireless power receiving equipment may have a wireless power receiving coil coupled to wireless power receiving circuitry such as a rectifier. Foreign object detection coil arrays may be formed from arrays of metal traces on printed circuit substrates that overlap the wireless power transfer coils. Control circuitry in the transmitting equipment and the receiving equipment may monitor signals from foreign object detection circuitry that is coupled to the coil arrays. The foreign object detection circuitry may produce in-phase and quadrature signals that are indicative of whether a foreign object is overlapping a foreign object detection coil array.
    Type: Application
    Filed: November 17, 2017
    Publication date: June 14, 2018
    Inventors: Hunter H. Wu, Anlang Lu, Brandon Pierquet, Jouya Jadidian
  • Patent number: 9800076
    Abstract: A method includes determining, by a base station including a number of transmitting coils, a first number of mutual magnetic parameters, each mutual magnetic parameter being associated with one of the transmitting coils and a receiving coil of at least one receiving coil associated with at least one electronic device remotely located from and to be remotely charged by the base station, determining a plurality of control signals based on the first number of mutual magnetic parameters, each control signal being associated with a corresponding one of the transmitting coils, providing each control signal to a driving circuit coupled to the control signal's corresponding transmitting coil, and using each control signal to cause the driving circuit coupled to the control signal's corresponding transmitting coil to cause a current with a magnitude and phase determined from the control signal to flow in the corresponding transmitting coil.
    Type: Grant
    Filed: September 30, 2014
    Date of Patent: October 24, 2017
    Assignee: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Jouya Jadidian, Dina Katabi
  • Publication number: 20150236526
    Abstract: A method includes determining, by a base station including a number of transmitting coils, a first number of mutual magnetic parameters, each mutual magnetic parameter being associated with one of the transmitting coils and a receiving coil of at least one receiving coil associated with at least one electronic device remotely located from and to be remotely charged by the base station, determining a plurality of control signals based on the first number of mutual magnetic parameters, each control signal being associated with a corresponding one of the transmitting coils, providing each control signal to a driving circuit coupled to the control signal's corresponding transmitting coil, and using each control signal to cause the driving circuit coupled to the control signal's corresponding transmitting coil to cause a current with a magnitude and phase determined from the control signal to flow in the corresponding transmitting coil.
    Type: Application
    Filed: September 30, 2014
    Publication date: August 20, 2015
    Inventors: Jouya Jadidian, Dina Katabi