Patents by Inventor Joy Roy

Joy Roy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170042460
    Abstract: Bodily fluid sample collection systems, devices, and method are provided. The device may comprise a first portion comprising at least a sample collection channel configured to draw the fluid sample into the sample collection channel via a first type of motive force. The sample collection device may include a second portion comprising a sample container for receiving the bodily fluid sample collected in the sample collection channel, the sample container operably engagable to be in fluid communication with the collection channel, whereupon when fluid communication is established, the container provides a second motive force different from the first motive force to move a majority of the bodily fluid sample from the channel into the container.
    Type: Application
    Filed: August 23, 2016
    Publication date: February 16, 2017
    Inventors: Elizabeth A. Holmes, Michael Chen, Pey-Jiun Ko, Tammy Burd, Adrit Lath, Patricia McHale, Joy Roy
  • Publication number: 20170038401
    Abstract: Systems and methods are provided for sample processing. A device may be provided, capable of receiving the sample, and performing one or more of a sample preparation, sample assay, and detection step. The device may be capable of performing multiple assays. The device may comprise one or more modules that may be capable of performing one or more of a sample preparation, sample assay, and detection step. The device may be capable of performing the steps using a small volume of sample.
    Type: Application
    Filed: May 23, 2016
    Publication date: February 9, 2017
    Inventors: Elizabeth A. Holmes, Sunny Balwani, Michael Chen, John K. Frankovich, Gary Frenzel, Surekha Gangakhedkar, Samartha Anekal, Adrit Lath, Alexander Loo, Chinmay Pangarkar, Paul Patel, Joy Roy, Timothy Smith, Daniel Young, Ian Gibbons
  • Publication number: 20160370396
    Abstract: Systems and methods are provided for sample processing. A device may be provided, capable of receiving the sample, and performing one or more of a sample preparation, sample assay, and detection step. The device may be capable of performing multiple assays. The device may comprise one or more modules that may be capable of performing one or more of a sample preparation, sample assay, and detection step. The device may be capable of performing the steps using a small volume of sample.
    Type: Application
    Filed: May 23, 2016
    Publication date: December 22, 2016
    Inventors: James Wasson, Pey-Jiun Ko, Joy Roy, Elizabeth A. Holmes
  • Publication number: 20160320381
    Abstract: Systems and methods are provided for sample processing. A device may be provided, capable of receiving the sample, and performing one or more of a sample preparation, sample assay, and detection step. The device may be capable of performing multiple assays. The device may comprise one or more modules that may be capable of performing one or more of a sample preparation, sample assay, and detection step. The device may be capable of performing the steps using a small volume of sample.
    Type: Application
    Filed: May 23, 2016
    Publication date: November 3, 2016
    Inventors: Elizabeth A. Holmes, Sunny Balwani, Michael Chen, John K. Frankovich, Gary Frenzel, Surekha Gangakhedkar, Samartha Anekal, Adrit Lath, Alexander Loo, Chinmay Pangarkar, Paul Patel, Joy Roy, Timothy Smith, Daniel Young, Ian Gibbons
  • Publication number: 20160169923
    Abstract: Systems and methods are provided for sample processing. A device may be provided, capable of receiving the sample, and performing one or more of a sample preparation, sample assay, and detection step. The device may be capable of performing multiple assays. The device may comprise one or more modules that may be capable of performing one or more of a sample preparation, sample assay, and detection step. The device may be capable of performing the steps using a small volume of sample.
    Type: Application
    Filed: December 10, 2015
    Publication date: June 16, 2016
    Inventors: Elizabeth A. Holmes, Sunny Balwani, Michael Chen, John K. Frankovich, Gary Frenzel, Surekha Gangakhedkar, Samartha Anekal, Adrit Lath, Alexander Loo, Chinmay Pangarkar, Paul Patel, Joy Roy, Timothy Smith, Daniel Young, Ian Gibbons
  • Publication number: 20160069919
    Abstract: Systems and methods are provided for sample processing. A device may be provided, capable of receiving the sample, and performing one or more of a sample preparation, sample assay, and detection step. The device may be capable of performing multiple assays. The device may comprise one or more modules that may be capable of performing one or more of a sample preparation, sample assay, and detection step. The device may be capable of performing the steps using a small volume of sample.
    Type: Application
    Filed: August 13, 2015
    Publication date: March 10, 2016
    Inventors: Elizabeth A. Holmes, Sunny Balwani, Michael Chen, John K. Frankovich, Gary Frenzel, Gangakhedkar Surekha, Anekal Samartha, Adrit Lath, Alexander Loo, Chinmay Pangarkar, Paul Patel, Joy Roy, Timothy Smith, Daniel Young, Ian Gibbons
  • Publication number: 20150368717
    Abstract: Systems and methods are provided for sample processing. A device may be provided, capable of receiving the sample, and performing one or more of a sample preparation, sample assay, and detection step. The device may be capable of performing multiple assays. The device may comprise one or more modules that may be capable of performing one or more of a sample preparation, sample assay, and detection step. The device may be capable of performing the steps using a small volume of sample.
    Type: Application
    Filed: July 1, 2015
    Publication date: December 24, 2015
    Inventors: Elizabeth A. Holmes, Sunny Balwani, Michael Chen, John K. Frankovich, Gary Frenzel, Surekha Gangakhedkar, Samartha Anekal, Adrit Lath, Alexander Loo, Chinmay Pangarkar, Paul Patel, Joy Roy, Timothy Smith, Daniel Young, Ian Gibbons
  • Publication number: 20150338428
    Abstract: Systems and methods are provided for sample processing. A device may be provided, capable of receiving the sample, and performing one or more of a sample preparation, sample assay, and detection step. The device may be capable of performing multiple assays. The device may comprise one or more modules that may be capable of performing one or more of a sample preparation, sample assay, and detection step. The device may be capable of performing the steps using a small volume of sample.
    Type: Application
    Filed: July 1, 2015
    Publication date: November 26, 2015
    Inventors: Elizabeth A. Holmes, Sunny Balwani, Michael Chen, John K. Frankovich, Gary Frenzel, Surekha Gangakhedkar, Samartha Anekal, Adrit Lath, Alexander Loo, Chinmay Pangarkar, Paul Patel, Joy Roy, Timothy Smith, Daniel Young, Ian Gibbons
  • Publication number: 20140308661
    Abstract: Systems and methods are provided for sample processing. A device may be provided, capable of receiving the sample, and performing one or more of a sample preparation, sample assay, and detection step. The device may be capable of performing multiple assays. The device may comprise one or more modules that may be capable of performing one or more of a sample preparation, sample assay, and detection step. The device may be capable of performing the steps using a small volume of sample.
    Type: Application
    Filed: February 18, 2014
    Publication date: October 16, 2014
    Inventors: Elizabeth A. Holmes, Sunny Balwani, Michael Chen, John K. Frankovich, Gary Frenzel, Surekha Gangakhedkar, Samartha Anekal, Adrit Lath, Alexander Loo, Chinmay Pangarkar, Paul Patel, Joy Roy, Timothy Smith, Daniel Young, Ian Gibbons
  • Publication number: 20140296089
    Abstract: Systems and methods are provided for sample processing. A device may be provided, capable of receiving the sample, and performing one or more of a sample preparation, sample assay, and detection step. The device may be capable of performing multiple assays. The device may comprise one or more modules that may be capable of performing one or more of a sample preparation, sample assay, and detection step. The device may be capable of performing the steps using a small volume of sample.
    Type: Application
    Filed: February 18, 2014
    Publication date: October 2, 2014
    Applicant: Theranos, Inc.
    Inventors: Elizabeth A. Holmes, Sunny Balwani, Michael Chen, John K. Frankovich, Gary Frenzel, Surekha Gangakhedkar, Samartha Anekal, Adrit Lath, Alexander Loo, Chinmay Pangarkar, Paul Patel, Joy Roy, Timothy Smith, Daniel Young, Ian Gibbons
  • Publication number: 20140186238
    Abstract: Systems and methods are provided for sample processing. A device may be provided, capable of receiving the sample, and performing one or more of a sample preparation, sample assay, and detection step. The device may be capable of performing multiple assays. The device may comprise one or more modules that may be capable of performing one or more of a sample preparation, sample assay, and detection step. The device may be capable of performing the steps using a small volume of sample.
    Type: Application
    Filed: July 1, 2013
    Publication date: July 3, 2014
    Applicant: Theranos, Inc.
    Inventors: Elizabeth Holmes, Joy Roy, John Kent Frankovich
  • Publication number: 20140162264
    Abstract: Systems and methods for multiple analyte detection include a system for distribution of a biological sample that includes a substrate, wherein the substrate includes a plurality of sample chambers, a sample introduction channel for each sample chamber, and a venting channel for each sample chamber. The system may further include a preloaded reagent contained in each sample chamber and configured for nucleic acid analysis of a biological sample that enters the substrate and a sealing instrument configured to be placed in contact with the substrate to seal each sample chamber so as to substantially prevent sample contained in each sample chamber from flowing out of each sample chamber. The substrate can be constructed of detection-compatible and assay-compatible materials.
    Type: Application
    Filed: December 2, 2013
    Publication date: June 12, 2014
    Applicant: APPLIED BIOSYSTEMS, LLC
    Inventors: Min Yue, David M. Liu, Joy Roy, Yuh-Min Chiang, Joon Mo Yang, Dennis Lehto, Charles S. Vann, Nigel P. Beard, Ian A. Harding, John R. Van Camp, Alexander Dromaretsky, Sergey V. Ermakov, Mark F. Oldham, Maryam Shariati, Umberto Ulmanella
  • Patent number: 8597590
    Abstract: Systems and methods for multiple analyte detection include a system for distribution of a biological sample that includes a substrate, wherein the substrate includes a plurality of sample chambers, a sample introduction channel for each sample chamber, and a venting channel for each sample chamber. The system may further include a preloaded reagent contained in each sample chamber and configured for nucleic acid analysis of a biological sample that enters the substrate and a sealing instrument configured to be placed in contact with the substrate to seal each sample chamber so as to substantially prevent sample contained in each sample chamber from flowing out of each sample chamber. The substrate can be constructed of detection-compatible and assay-compatible materials.
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: December 3, 2013
    Assignee: Applied Biosystems, LLC
    Inventors: Min Yue, David M. Liu, Joy Roy, Yuh-Min Chiang, Joon Mo Yang, Dennis Lehto, Charles S. Vann, Nigel P. Beard, Ian A. Harding, John R. Van Camp, Alexander Dromaretsky, Sergey V. Ermakov, Mark F. Oldham, Maryam Shariati, Umberto Ulmanella
  • Patent number: 8475739
    Abstract: Systems and methods are provided for sample processing. A device may be provided, capable of receiving the sample, and performing one or more of a sample preparation, sample assay, and detection step. The device may be capable of performing multiple assays. The device may comprise one or more modules that may be capable of performing one or more of a sample preparation, sample assay, and detection step. The device may be capable of performing the steps using a small volume of sample.
    Type: Grant
    Filed: September 26, 2011
    Date of Patent: July 2, 2013
    Assignee: Theranos, Inc.
    Inventors: Elizabeth Holmes, Joy Roy, John Kent Frankovich
  • Publication number: 20130078625
    Abstract: Systems and methods are provided for sample processing. A device may be provided, capable of receiving the sample, and performing one or more of a sample preparation, sample assay, and detection step. The device may be capable of performing multiple assays. The device may comprise one or more modules that may be capable of performing one or more of a sample preparation, sample assay, and detection step. The device may be capable of performing the steps using a small volume of sample.
    Type: Application
    Filed: September 26, 2011
    Publication date: March 28, 2013
    Applicant: Theranos, Inc., a Delaware Corporation
    Inventors: Elizabeth Holmes, Joy Roy
  • Publication number: 20130078733
    Abstract: Systems and methods are provided for sample processing. A device may be provided, capable of receiving the sample, and performing one or more of a sample preparation, sample assay, and detection step. The device may be capable of performing multiple assays. The device may comprise one or more modules that may be capable of performing one or more of a sample preparation, sample assay, and detection step. The device may be capable of performing the steps using a small volume of sample.
    Type: Application
    Filed: September 26, 2011
    Publication date: March 28, 2013
    Applicant: Theranos, Inc., a Delaware Corporation
    Inventors: Elizabeth Holmes, Joy Roy, John Kent Frankovick
  • Patent number: 8318094
    Abstract: This invention provides systems for analyzing substrates. Also provided by the invention are improved optical systems for enhanced multiplex illumination, optical systems with compact multi-wavelength illumination architectures, optical systems for enhanced detection of optical signals, and optical systems for reduced autofluorescence background noise.
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: November 27, 2012
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Hovig Bayandorian, Yujuan Cheng, John Dixon, Kevin Hester, Yanqiao Huang, Paul Lundquist, Joy Roy, Stephen Turner, Peiqian Zhao, Cheng Frank Zhong
  • Publication number: 20110020179
    Abstract: Systems and methods for multiple analyte detection include a system for distribution of a biological sample that includes a substrate, wherein the substrate includes a plurality of sample chambers, a sample introduction channel for each sample chamber, and a venting channel for each sample chamber. The system may further include a preloaded reagent contained in each sample chamber and configured for nucleic acid analysis of a biological sample that enters the substrate and a sealing instrument configured to be placed in contact with the substrate to seal each sample chamber so as to substantially prevent sample contained in each sample chamber from flowing out of each sample chamber. The substrate can be constructed of detection-compatible and assay-compatible materials.
    Type: Application
    Filed: May 27, 2010
    Publication date: January 27, 2011
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: Min Yue, David M. Liu, Yuh-Min Chiang, Joon-Mo Yang, Dennis Lehto, Charles S. Vann, Nigel P. Beard, Ian A. Harding, John Van Camp, Alexander Dromaretsky, Sergey V. Ermakov, Mark F. Oldham, Joy Roy, Maryam Shariati, Umberto Ulmanella
  • Patent number: 7517043
    Abstract: Various fluidic techniques can employ ducting structures, such as microstructures, that extend between other components, such as plate-like structures. A ducting structure can, for example, include an inlet opening toward or near one plate-like structure, an outlet opening toward or near another plate-like structure, and a duct in which fluid flows after being received through the inlet opening and before being provided through the outlet opening. In some implementations, a ducting structure is photo-defined, such as by exposing a photoimageable structure and then removing either exposed or unexposed regions. In some implementations, a ducting structure is a freestanding polymer microstructure. In some implementations, ducting structures are microstructures that extend approximately the same length between first and second plate-like structures, and have a ratio of length to maximum cavity diameter of approximately two or more.
    Type: Grant
    Filed: December 16, 2004
    Date of Patent: April 14, 2009
    Assignee: Xerox Corporation
    Inventors: John S. Fitch, Scott Elrod, Jurgen Daniel, James W. Stasiak, Steven A. Buhler, Babur B. Hadimioglu, Joy Roy, Michael C. Weisberg, James C. Zesch
  • Publication number: 20070014695
    Abstract: Systems and methods for multiple analyte detection include a system for distribution of a biological sample that includes a substrate, wherein the substrate includes a plurality of sample chambers, a sample introduction channel for each sample chamber, and a venting channel for each sample chamber. The system may further include a preloaded reagent contained in each sample chamber and configured for nucleic acid analysis of a biological sample that enters the substrate and a sealing instrument configured to be placed in contact with the substrate to seal each sample chamber so as to substantially prevent sample contained in each sample chamber from flowing out of each sample chamber. The substrate can be constructed of detection-compatible and assay-compatible materials.
    Type: Application
    Filed: April 26, 2006
    Publication date: January 18, 2007
    Applicant: Applera Corporation
    Inventors: Min Yue, David Liu, Yuh-Min Chiang, Joon Mo Yang, Dennis Lehto, Charles Vann, Nigel Beard, Ian Harding, John Van Camp, Alexander Dromaretsky, Sergey Ermakov, Mark Oldham, Joy Roy, Maryam Shariati, Umberto Ulmanella