Patents by Inventor Jr-Hung Li

Jr-Hung Li has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10519545
    Abstract: A system and method for plasma enhanced deposition processes. An exemplary semiconductor manufacturing system includes a susceptor configured to hold a semiconductor wafer and a sector disposed above the susceptor. The sector includes a first plate and an overlying second plate, operable to form a plasma there between. The first plate includes a plurality of holes extending through the first plate, which vary in at least one of diameter and density from a first region of the first plate to a second region of the first plate.
    Type: Grant
    Filed: May 31, 2016
    Date of Patent: December 31, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kun-Mo Lin, Yi-Hung Lin, Jr-Hung Li, Tze-Liang Lee, Ting-Gang Chen, Chung-Ting Ko
  • Patent number: 10510612
    Abstract: Gate structures and gate spacers, along with methods of forming such, are described. In an embodiment, a structure includes an active area on a substrate, a gate structure on the active area and over the substrate, and a low-k gate spacer on the active area and along a sidewall of the gate structure. The gate structure includes a conformal gate dielectric on the active area and includes a gate electrode over the conformal gate dielectric. The conformal gate dielectric extends vertically along a first sidewall of the low-k gate spacer. In some embodiments, the low-k gate spacer can be formed using a selective deposition process after a dummy gate structure has been removed in a replacement gate process.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: December 17, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Bo-Cyuan Lu, Chunyao Wang, Jr-Hung Li, Chung-Ting Ko, Chi On Chui
  • Patent number: 10504990
    Abstract: Semiconductor devices and methods of fabricating semiconductor devices are provided. The present disclosure provides a semiconductor device that includes a first fin structure and a second fin structure each extending from a substrate; a first gate segment over the first fin structure and a second gate segment over the second fin structure; a first isolation feature separating the first and second gate segments; a first source/drain (S/D) feature over the first fin structure and adjacent to the first gate segment; a second S/D feature over the second fin structure and adjacent to the second gate segment; and a second isolation feature also disposed in the trench. The first and second S/D features are separated by the second isolation feature, and a composition of the second isolation feature is different from a composition of the first isolation feature.
    Type: Grant
    Filed: February 27, 2018
    Date of Patent: December 10, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: I-Wen Wu, Fu-Kai Yang, Chen-Ming Lee, Mei-Yun Wang, Jr-Hung Li, Bo-Cyuan Lu
  • Patent number: 10505021
    Abstract: A FinFET device and a method of forming the same are provided. A method includes forming a fin extending above an isolation region. A sacrificial gate is formed over the fin. A first dielectric material is selectively deposited on sidewalls of the sacrificial gate to form spacers on the sidewalls of the sacrificial gate. The fin is patterned using the sacrificial gate and the spacers as a combined mask to form a recess in the fin. An epitaxial source/drain region is formed in the recess.
    Type: Grant
    Filed: February 28, 2018
    Date of Patent: December 10, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Ting Ko, Bo-Cyuan Lu, Jr-Hung Li, Chi On Chui
  • Patent number: 10483168
    Abstract: Gate structures and gate spacers, along with methods of forming such, are described. In an embodiment, a structure includes an active area on a substrate, a gate structure on the active area and over the substrate, and a low-k gate spacer on the active area and along a sidewall of the gate structure. The gate structure includes a conformal gate dielectric on the active area and includes a gate electrode over the conformal gate dielectric. The conformal gate dielectric extends vertically along a first sidewall of the low-k gate spacer. In some embodiments, the low-k gate spacer can be formed using a selective deposition process after a dummy gate structure has been removed in a replacement gate process.
    Type: Grant
    Filed: December 6, 2017
    Date of Patent: November 19, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Bo-Cyuan Lu, Chunyao Wang, Jr-Hung Li, Chung-Ting Ko, Chi On Chui
  • Patent number: 10475788
    Abstract: A FinFET device structure is provided. The FinFET device structure includes a fin structure formed over a substrate and a first gate structure formed over the fin structure. The FinFET device structure also includes a first capping layer formed over the first gate structure and a first etching stop layer over the first capping layer and the first gate structure. The FinFET device structure further includes a first source/drain (S/D) contact structure formed over the fin structure and adjacent to the first gate structure. A portion of the first etching stop layer which is directly above the first capping layer is higher than another portion of the first etching stop layer which is directly above the first gate spacer layer.
    Type: Grant
    Filed: November 24, 2017
    Date of Patent: November 12, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chun-Han Chen, Chen-Ming Lee, Fu-Kai Yang, Mei-Yun Wang, Jr-Hung Li, Bo-Cyuan Lu
  • Patent number: 10468529
    Abstract: Structures and formation methods of a semiconductor device structure are provided. The semiconductor device structure includes a substrate, a gate structure over the substrate and having a sidewall, a spacer element over the sidewall of the gate structure and a source/drain portion adjacent to the spacer element and the gate structure. The semiconductor device structure also includes an etch stop layer over the source/drain portion, an interlayer dielectric layer over the etch stop layer and in contact with the spacer element, and a contact plug penetrating through the interlayer dielectric layer and the etch stop layer, and electrically connected to the source/drain portion.
    Type: Grant
    Filed: July 11, 2017
    Date of Patent: November 5, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chung-Ting Ko, Bo-Cyuan Lu, Jr-Hung Li, Chi-On Chui
  • Patent number: 10435811
    Abstract: An IC fabrication system for facilitating improved thermal uniformity includes a chamber within which an IC process is performed on a substrate, a heating mechanism configured to heat the substrate, and a substrate-retaining device configured to retain the substrate in the chamber. The substrate-retaining device includes a contact surface configured to contact an edge of the retained substrate without the substrate-retaining device contacting a circumferential surface of the retained substrate. The substrate-retaining device includes a plurality of contact regions and a plurality of noncontact regions disposed at a perimeter, where the plurality of noncontact regions is interspersed with the plurality of contact regions. Each of the plurality of noncontact regions includes the contact surface.
    Type: Grant
    Filed: December 12, 2016
    Date of Patent: October 8, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD
    Inventors: Yi-Hung Lin, Jr-Hung Li, Chang-Shen Lu, Tze-Liang Lee, Chii-Horng Li
  • Publication number: 20190164960
    Abstract: A FinFET device structure is provided. The FinFET device structure includes a fin structure formed over a substrate and a first gate structure formed over the fin structure. The FinFET device structure also includes a first capping layer formed over the first gate structure and a first etching stop layer over the first capping layer and the first gate structure. The FinFET device structure further includes a first source/drain (S/D) contact structure formed over the fin structure and adjacent to the first gate structure. A portion of the first etching stop layer which is directly above the first capping layer is higher than another portion of the first etching stop layer which is directly above the first gate spacer layer.
    Type: Application
    Filed: November 24, 2017
    Publication date: May 30, 2019
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Han CHEN, Chen-Ming LEE, Fu-Kai YANG, Mei-Yun WANG, Jr-Hung LI, Bo-Cyuan LU
  • Publication number: 20190157387
    Abstract: Semiconductor devices and methods of fabricating semiconductor devices are provided. The present disclosure provides a semiconductor device that includes a first fin structure and a second fin structure each extending from a substrate; a first gate segment over the first fin structure and a second gate segment over the second fin structure; first isolation feature separating the first and second gate segments; a first source/drain (S/D) feature over the first fin structure and adjacent to the first gate segment; a second S/D feature over the second fin structure and adjacent to the second gate segment; and a second isolation feature also disposed in the trench. The first and second S/D features are separated by the second isolation feature, and a composition of the second isolation feature is different from a composition of the first isolation feature.
    Type: Application
    Filed: February 27, 2018
    Publication date: May 23, 2019
    Inventors: I-Wen Wu, Fu-Kai Yang, Chen-Ming Lee, Mei-Yun Wang, Jr-Hung Li, Bo-Cyuan Lu
  • Publication number: 20190148239
    Abstract: Gate structures and gate spacers, along with methods of forming such, are described. In an embodiment, a structure includes an active area on a substrate, a gate structure on the active area and over the substrate, and a low-k gate spacer on the active area and along a sidewall of the gate structure. The gate structure includes a conformal gate dielectric on the active area and includes a gate electrode over the conformal gate dielectric. The conformal gate dielectric extends vertically along a first sidewall of the low-k gate spacer. In some embodiments, the low-k gate spacer can be formed using a selective deposition process after a dummy gate structure has been removed in a replacement gate process.
    Type: Application
    Filed: November 29, 2018
    Publication date: May 16, 2019
    Inventors: Bo-Cyuan Lu, Chunyao Wang, Jr-Hung Li, Chung-Ting Ko, Chi On Chui
  • Publication number: 20190148238
    Abstract: Gate structures and gate spacers, along with methods of forming such, are described. In an embodiment, a structure includes an active area on a substrate, a gate structure on the active area and over the substrate, and a low-k gate spacer on the active area and along a sidewall of the gate structure. The gate structure includes a conformal gate dielectric on the active area and includes a gate electrode over the conformal gate dielectric. The conformal gate dielectric extends vertically along a first sidewall of the low-k gate spacer. In some embodiments, the low-k gate spacer can be formed using a selective deposition process after a dummy gate structure has been removed in a replacement gate process.
    Type: Application
    Filed: December 6, 2017
    Publication date: May 16, 2019
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Bo-Cyuan LU, Chunyao WANG, Jr-Hung LI, Chung-Ting KO, Chi On Chui
  • Publication number: 20190131421
    Abstract: Structures and formation methods of a semiconductor device structure are provided. The method includes forming a fin structure over a substrate. The method also includes forming a gate structure over the fin structure. The method further includes forming fin spacers over sidewalls of the fin structure and gate spacers over sidewalls of the gate structure. In addition, the method includes forming a source/drain structure over the fin structure and depositing a dummy material layer to cover the source/drain structure. The dummy material layer is removed faster than the gate spacers during the removal of the dummy material layer. The method further includes forming a salicide layer over the source/drain structure and the fin spacers, and forming a contact over the salicide layer. The dummy material layer includes Ge, amorphous silicon or spin-on carbon.
    Type: Application
    Filed: October 30, 2017
    Publication date: May 2, 2019
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsiang-Ku SHEN, Jin-Mu YIN, Tsung-Chieh HSIAO, Chia-Lin CHUANG, Li-Zhen YU, Dian-Hau CHEN, Shih-Wei WANG, De-Wei YU, Chien-Hao CHEN, Bo-Cyuan LU, Jr-Hung LI, Chi-On CHUI, Min-Hsiu HUNG, Huang-Yi HUANG, Chun-Cheng CHOU, Ying-Liang CHUANG, Yen-Chun HUANG, Chih-Tang PENG, Cheng-Po CHAU, Yen-Ming CHEN
  • Publication number: 20190103477
    Abstract: A FinFET device and a method of forming the same are provided. A method includes forming a fin extending above an isolation region. A sacrificial gate is formed over the fin. A first dielectric material is selectively deposited on sidewalls of the sacrificial gate to form spacers on the sidewalls of the sacrificial gate. The fin is patterned using the sacrificial gate and the spacers as a combined mask to form a recess in the fin. An epitaxial source/drain region is formed in the recess.
    Type: Application
    Filed: February 28, 2018
    Publication date: April 4, 2019
    Inventors: Chung-Ting Ko, Bo-Cyuan Lu, Jr-Hung Li, Chi On Chui
  • Publication number: 20190096888
    Abstract: Methods of forming a differential layer, such as a Contact Etch Stop Layer (CESL), in a semiconductor device are described herein, along with structures formed by the methods. In an embodiment, a structure includes an active area on a substrate, a gate structure over the active area, a gate spacer along a sidewall of the gate structure, and a differential etch stop layer. The differential etch stop layer has a first portion along a sidewall of the gate spacer and has a second portion over an upper surface of the source/drain region. A first thickness of the first portion is in a direction perpendicular to the sidewall of the gate spacer, and a second thickness of the second portion is in a direction perpendicular to the upper surface of the source/drain region. The second thickness is greater than the first thickness.
    Type: Application
    Filed: January 18, 2018
    Publication date: March 28, 2019
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chung-Ting KO, Jr-Hung LI, Chi On CHUI
  • Publication number: 20190019890
    Abstract: Structures and formation methods of a semiconductor device structure are provided. The semiconductor device structure includes a substrate, a gate structure over the substrate and having a sidewall, a spacer element over the sidewall of the gate structure and a source/drain portion adjacent to the spacer element and the gate structure. The semiconductor device structure also includes an etch stop layer over the source/drain portion, an interlayer dielectric layer over the etch stop layer and in contact with the spacer element, and a contact plug penetrating through the interlayer dielectric layer and the etch stop layer, and electrically connected to the source/drain portion.
    Type: Application
    Filed: July 11, 2017
    Publication date: January 17, 2019
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chung-Ting KO, Bo-Cyuan LU, Jr-Hung LI, Chi-On CHUI
  • Patent number: 9960059
    Abstract: A honeycomb heater includes a lamp housing having an outer edge that forms a partial circle. The lamp housing has an opening extending from a top surface to a bottom surface of the lamp housing. The opening further extends from the outer edge into a center region of the lamp housing. A plurality of lamps is distributed throughout the lamp housing, and is configured to emit light out of the top surface of the lamp housing.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: May 1, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Hung Lin, Jr-Hung Li, Chii-Horng Li, Tze-Liang Lee
  • Publication number: 20170342561
    Abstract: A system and method for plasma enhanced deposition processes. An exemplary semiconductor manufacturing system includes a susceptor configured to hold a semiconductor wafer and a sector disposed above the susceptor. The sector includes a first plate and an overlying second plate, operable to form a plasma there between. The first plate includes a plurality of holes extending through the first plate, which vary in at least one of diameter and density from a first region of the first plate to a second region of the first plate.
    Type: Application
    Filed: May 31, 2016
    Publication date: November 30, 2017
    Inventors: Kun-Mo LIN, Yi-Hung LIN, Jr-Hung LI, Tze-Liang LEE, Ting-Gang CHEN, Chung-Ting KO
  • Publication number: 20170088976
    Abstract: An IC fabrication system for facilitating improved thermal uniformity includes a chamber within which an IC process is performed on a substrate, a heating mechanism configured to heat the substrate, and a substrate-retaining device configured to retain the substrate in the chamber. The substrate-retaining device includes a contact surface configured to contact an edge of the retained substrate without the substrate-retaining device contacting a circumferential surface of the retained substrate. The substrate-retaining device includes a plurality of contact regions and a plurality of noncontact regions disposed at a perimeter, where the plurality of noncontact regions is interspersed with the plurality of contact regions. Each of the plurality of noncontact regions includes the contact surface.
    Type: Application
    Filed: December 12, 2016
    Publication date: March 30, 2017
    Inventors: Yi-Hung Lin, Jr-Hung Li, Chang-Shen Lu, Tze-Liang Lee, Chii-Horng Li
  • Patent number: 9517539
    Abstract: A substrate-retaining device with improved thermal uniformity is provided. In an exemplary embodiment, the substrate-retaining device includes a substantially circular first surface with a defined perimeter, a plurality of contact regions disposed at the perimeter, and a plurality of noncontact regions also disposed at the perimeter. The contact regions are interspersed with the noncontact regions. Within each of the noncontact regions, the first surface extends past where the first surface ends within each of the contact regions. In some such embodiments, each region of the plurality of contact regions includes a contact surface disposed above the first surface.
    Type: Grant
    Filed: August 28, 2014
    Date of Patent: December 13, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Hung Lin, Jr-Hung Li, Chang-Shen Lu, Tze-Liang Lee, Chii-Horng Li