Patents by Inventor Jr-Wei Peng

Jr-Wei Peng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10615421
    Abstract: A manufacturing method of nitrogenous carbon electrode and flow cell provided therewith is disclosed. Firstly, a preformed body is performed by mixing a carbon material, a polymeric material and a modifier. A formation process is performed on the preformed body to obtain a formed body. A high sintering is then performed, such that a part of the polymeric material is decomposed and then removed, while the other part of polymeric material is cooperated with the carbon material to form a skeletal structure including a plurality of pores, and that the nitrogen in the modifier is adhered to the skeletal structure to form a nitrogenous functional group, and then form a nitrogenous carbon electrode. The nitrogenous carbon electrode may be applied to the flow cell. Thereby, electric conductivity in a vertical direction may be enhanced, so as to reduce internal resistance of the flow cell and increase discharge power.
    Type: Grant
    Filed: January 26, 2017
    Date of Patent: April 7, 2020
    Assignee: TAIWAN CARBON NANO TECHNOLOGY CORPORATION
    Inventors: Kuang-Che Lee, Chien-Yao Huang, Jr-Wei Peng, Chun-Hsien Tsai, Chun-Jung Tsai, Ting-Chuan Lee
  • Publication number: 20170221646
    Abstract: A nitrogen-containing porous carbon material, and a capacitor and a manufacturing method thereof are provided. A carbon material, a macromolecular material and a modified material are mixed into a preform. The modified material includes nitrogen. A formation process is performed on the preform to obtain a formed object. High-temperature sintering is performed on the formed object to decompose and remove a part of the macromolecular material, while the other part of the macromolecular material and the carbon material together form a backbone structure including a plurality of pores. As such, the nitrogen becomes attached to the backbone structure to form a hydrogen-containing functional group to further obtain the nitrogen-containing porous carbon material. The nitrogen-containing porous carbon material may form a first nitrogen-containing porous carbon plate and a second nitrogen-containing porous carbon plate, which are placed in seawater to form a storage capacitor for seawater.
    Type: Application
    Filed: January 10, 2017
    Publication date: August 3, 2017
    Inventors: Kuang-Che Lee, Po-Yen Liao, Jr-Wei Peng, Chun-Hsien Tsai, Chun-Jung Tsai, Ting-Chuan Lee
  • Publication number: 20170222230
    Abstract: A manufacturing method of nitrogenous carbon electrode and flow cell provided therewith is disclosed. Firstly, a preformed body is performed by mixing a carbon material, a polymeric material and a modifier. A formation process is performed on the preformed body to obtain a formed body. A high sintering is then performed, such that a part of the polymeric material is decomposed and then removed, while the other part of polymeric material is cooperated with the carbon material to form a skeletal structure including a plurality of pores, and that the nitrogen in the modifier is adhered to the skeletal structure to form a nitrogenous functional group, and then form a nitrogenous carbon electrode. The nitrogenous carbon electrode may be applied to the flow cell. Thereby, electric conductivity in a vertical direction may be enhanced, so as to reduce internal resistance of the flow cell and increase discharge power.
    Type: Application
    Filed: January 26, 2017
    Publication date: August 3, 2017
    Inventors: Kuang-Che Lee, Chien-Yao Huang, Jr-Wei Peng, Chun-Hsien Tsai, Chun-Jung Tsai, Ting-Chuan Lee
  • Publication number: 20120282733
    Abstract: A method for band gap tuning of metal oxide semiconductors is provided, comprising: placing a metal oxide semiconductor in a plasma chamber; (a1) treating the metal oxide semiconductor with an oxygen plasma for oxidizing the metal oxide semiconductor to decrease band gap thereof; and (a2) treating the metal oxide semiconductor with a hydrogen plasma for reducing the metal oxide semiconductor to increase band gap thereof; or (b1) treating the metal oxide semiconductor with an oxygen plasma for oxidizing the metal oxide semiconductor to increase band gap thereof; and (b2) treating the metal oxide semiconductor with a hydrogen plasma for reducing the metal oxide semiconductor to decrease band gap thereof.
    Type: Application
    Filed: August 11, 2011
    Publication date: November 8, 2012
    Inventors: Szetsen Steven LEE, Jr-Wei Peng